

Final Exam

DCHEM-1: GENERAL CHEMISTRY+FUELS AND LUBRICATION

Fall 2024

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration: 2 hours

Instructor's Name: ASIM HAMDAN

Exam Date: 5 JAN 2025

Program: DO

40

Student Information

Name:

ID:

Signature:

Invigilator

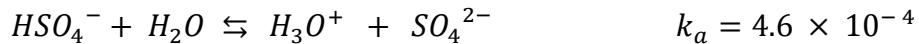
Initials:

Student ID checked

Time received:

Question 1

Circle the correct option for the following question given below. **(6 Marks)**



(a) Identify the Arrhenius **BASE** from the choices given below

i)	H_2SO_4	iii)	HCL
ii)	NH_3	iv)	KOH

(b) How many moles of caffeine, $C_8H_{10}N_4O_2$ are there in 150 g?

i)	0.663 mol	iii)	1.42×10^{-4} mol
ii)	0.773 mol	iv)	1.348 mol

(c) Which is the **weakest** acid from the list.

i)	HI	iii)	HSO_4^-
ii)	$HOCH_3$	iv)	HCH_3

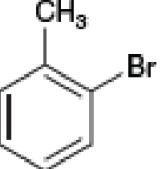
(d) Conjugate acid for base HPO_4^{2-}

i)	$H_2PO_4^-$	iii)	OH^-
ii)	PO_4^{3-}	iv)	H_3O^+

(e) Which of the following compounds would you expect to be formed **covalent** bond.

i)	NaCl	iii)	NH_3
ii)	$MgCl_2$	iv)	CaO

(f) The hydroxide ion concentration of NaOH is approximately 0.05M. What are the corresponding values of PH

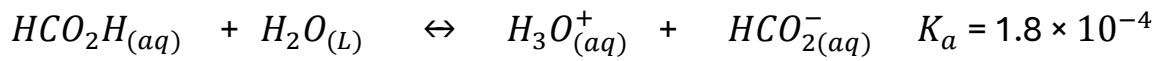

i) 7.9	iii) 12.7
ii) 13.1	iv) 11.6

Question 2

ANSWER ALL THE QUESTIONS IN THE SPACE PROVIDED

1. The petroleum crude distillation process separates various oils, fuels, and lubricants from the raw oil extracted from wells.

a) Name the following components in the crude oil and classify them as Alkane, Alkene, Alkyne or cyclic hydrocarbon. (6 marks)


Organic Compound	Name of the component	Category
Example: CH_4	Methane	Alkane
$ \begin{array}{c} \text{H}_2\text{C}\cdot\text{CH}_3 \\ \\ \text{H}_3\text{C}-\text{C}\equiv\text{C}-\text{CH}-\text{CHCH}_3 \\ \\ \text{H}_3\text{C} \end{array} $		
$ \begin{array}{c} \text{CH}_3 \\ \\ \text{CH}_3\text{CHCH}=\text{CCH}_3 \\ \\ \text{CH}_3 \end{array} $		

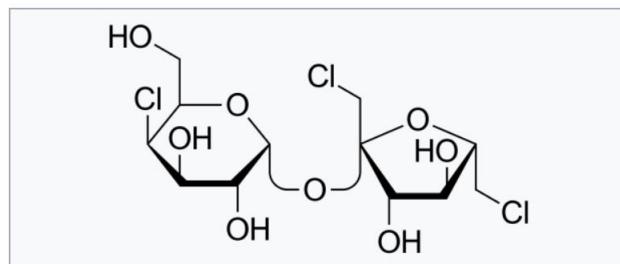
b) Write the structural formulae for the following organic compound given below. (4 marks)

i) 3-ethyl-2,4-dimethylhexane.

ii) cyclopropene.

2. (a) Formic acid (weak acid), HCO_2H , is one irritant that causes the body's reaction to some ant bites and stings. What is the concentration of hydronium ion and the pH of a 0.450M solution of formic acid? (5 marks)

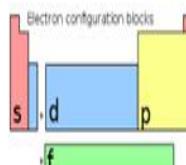
(b) calculate the percent of ionization of this formic acid HCO_2H ? (3 marks)


(c) What is the POH of calcium hydroxide, a solution of $\text{Ca}(\text{OH})_2$ with a concentration of 0.1 M?
(3 marks)

(d) Decide whether the given solution H_2SO_4 is a strong or weak acid. Justify your answer with a suitable reason.
(3 marks)

3- (a) A major textile dye manufacturer developed a new yellow dye. The dye has a percent composition of 75.95% C, 17.72% N, and H by mass with a molar mass of about 148g/mol. Determine the molecular formula of the dye. (3marks)

(b) What is the concentration of the solution that results from diluting 25.0 mL of a 2.04M solution of CH_3OH to 500.0 mL? (3 marks)


(c) **Sucralose** is an artificial sweetener contains 50.0 mg of saccharin ($\text{C}_{12}\text{H}_{19}\text{Cl}_3\text{O}_3$), which has the structural formula

(Tran, N.H., Reinhard, M. and Gin, K.Y.H., 2018)

Given that saccharin has a molar mass of 317.5 g/mol, how many saccharin molecules are in a 50.0 mg (0.0500 g) sample of saccharin? How many carbon atoms are in the same sample? (4 marks)

Periodic Table of the Elements

Notes

- $1 \text{ kJ/mol} \approx 96,485 \text{ eV}$
- all elements are implied to have an oxidation state of zero

Int. J. Environ. Res. Public Health 2018, 15, 2718

140.12 58 53.4 1.12	140.91 59 52.7 1.19	144.24 60 53.1 1.14	145) 61 54.0 1.17	150.36 62 54.5 1.17	151.96 63 54.7 1.20	157.25 64 59.4 1.20	158.93 65 56.8 1.22	162.50 66 57.0 1.22	164.93 67 58.0 1.23	168.25 68 58.3 1.24	168.93 69 59.7 1.25	173.05 70 60.4 1.25	174.97 71 59.5 1.27
*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Lutetium	
[He] 4f ¹ 5d ¹ 6s ²	[He] 4f ¹ 5d ¹	[He] 4f ² 5d ¹	[He] 4f ² 5d ¹	[He] 4f ³ 5d ¹	[He] 4f ⁴ 5d ¹	[He] 4f ⁵ 5d ¹	[He] 4f ⁶ 5d ¹	[He] 4f ⁷ 5d ¹	[He] 4f ⁸ 5d ¹	[He] 4f ⁹ 5d ¹	[He] 4f ¹⁰ 5d ¹	[He] 4f ¹¹ 5d ¹	
232.04 90 76.7 1.30	231.04 91 76.8 1.30	238.03 92 76.8 1.30	(237) 93 96.5 1.36	(244) 94 58.7 1.20	(243) 95 57.8 1.30	(247) 96 58.1 1.30	(247) 97 60.3 1.30	(251) 98 60.9 1.30	(252) 99 61.9 1.30	(257) 100 62.7 1.30	(258) 101 63.0 1.30	(259) 102 64.3 1.30	(262) 103 47.0
*	Th	Pa	Protactinium	U	Uranium	Np	Pu	Am	Cm	Bk	Cf	Es	Md
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
[He] 5f ¹ 6d ¹ 7s ²	[He] 5f ² 6d ¹ 7s ²	[He] 5f ³ 6d ¹ 7s ²	[He] 5f ⁴ 6d ¹ 7s ²	[He] 5f ⁵ 6d ¹ 7s ²	[He] 5f ⁶ 6d ¹ 7s ²	[He] 5f ⁷ 6d ¹ 7s ²	[He] 5f ⁸ 6d ¹ 7s ²	[He] 5f ⁹ 6d ¹ 7s ²	[He] 5f ¹⁰ 6d ¹ 7s ²	[He] 5f ¹¹ 6d ¹ 7s ²	[He] 5f ¹² 6d ¹ 7s ²	[He] 5f ¹³ 6d ¹ 7s ²	

Q #	MLO Addressee d	Complexity Level	Mark	Remark
1-b,c,f	MLO 2	Apply	3	
1-a,d,e	MLO 3	Knowledge	3	
2-1-a	MLO 2	analyse	6	
2-1-bi+ii	MLO 2	Apply	4	
2-2-a,b,c	MLO2	Apply + knowledge	11	
2-2-d	MLO3	knowledge	3	
2-3-a,b	MLO2	Apply	6	
2-3-c	MLO 3	Analyse	4	

