

## Final Exam

# DCHEM-1: GENERAL CHEMISTRY+FUELS AND LUBRICATION

## Spring 2024-25

### Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

**Exam Duration:**

2 hours

**Instructor's Name:**

ASIM HAMDAN

**Exam Date:**

18 JUN 2025

**Program:**

DO

|  |           |
|--|-----------|
|  | <b>40</b> |
|  | <b>10</b> |

### Student Information

Name:

ID:

Signature:

### Invigilator

Initials:

Student ID checked

Time received:

**Section A****(6 marks)****Circle the correct option for the following question given below.**(a) Identify the Bronsted Lowry **BASE** from the choices given below.

|     |                         |      |              |
|-----|-------------------------|------|--------------|
| i)  | $\text{H}_2\text{SO}_4$ | iii) | $\text{HCl}$ |
| ii) | $\text{NH}_3$           | iv)  | $\text{HF}$  |

(b) Element X has 7 protons, the correct **electronic configuration** of this element is

|     |                  |      |                  |
|-----|------------------|------|------------------|
| i)  | $1S^2 2S^2 2P^3$ | iii) | $1S^2 2S^3 2P^2$ |
| ii) | $1S^2 2S^1 2P^4$ | iv)  | $1S^2 2P^3 2S^2$ |

(c) The concentration in **ppb unit** of a pollutant that has measured 450 mg pollutant per 15000 kg of sample.

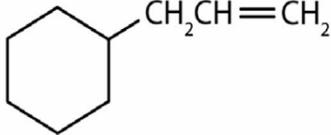
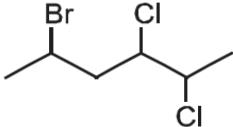
|     |        |     |        |
|-----|--------|-----|--------|
| i)  | 30 ppb | ii) | 50 ppb |
| ii) | 40 ppb | iv) | 60 ppb |

(d) The molecular formula of **alkane** from the following options is.

|     |                           |      |                           |
|-----|---------------------------|------|---------------------------|
| i)  | $\text{C}_5\text{H}_{12}$ | iii) | $\text{C}_5\text{H}_{14}$ |
| ii) | $\text{C}_5\text{H}_{12}$ | iv)  | $\text{C}_5\text{H}_8$    |

(e) The ion product of water at  $80^\circ\text{C}$  is  $2.4 \times 10^{-13}$ . The concentrations of hydronium ion and hydroxide ions in pure water at  $80^\circ\text{C}$ ,

|     |                       |      |                       |
|-----|-----------------------|------|-----------------------|
| i)  | $5.95 \times 10^{-7}$ | iii) | $4.89 \times 10^{-7}$ |
| ii) | $4.98 \times 10^{-7}$ | iv)  | $5.97 \times 10^{-7}$ |



(f) The concentration of 31.5 g nitric acid  $\text{HNO}_3$  dissolve into 250 ml of water is.

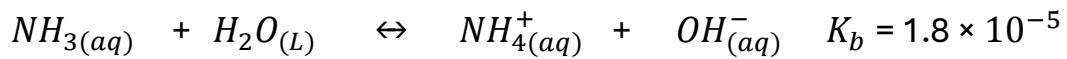
|     |       |      |       |
|-----|-------|------|-------|
| i)  | 3 M   | iii) | 2.5 M |
| ii) | 3.4 M | iv)  | 2 M   |

**Section B****ANSWER ALL THE QUESTIONS IN THE SPACE PROVIDED**

1. The petroleum crude distillation process separates various oils, fuels, and lubricants from the raw oil extracted from wells.

a) Given the name of the following components in the crude oil and classify them as Alkane, Alkene, Alkyne or cyclic hydrocarbon. (6 marks)

| <b>Organic Compound</b>                                                                                                                                                    | <b>Name of the component</b> | <b>Category</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|
| Example: $\text{CH}_4$                                                                                                                                                     | Methane                      | Alkane          |
|                                                                                           |                              |                 |
|                                                                                         |                              |                 |
| $\begin{array}{c} \text{H}_2\text{C}\cdot\text{CH}_3 \\   \\ \text{H}_3\text{C}\cdot\text{C}\equiv\text{C}-\text{CH}-\text{CHCH}_3 \\   \\ \text{H}_3\text{C} \end{array}$ |                              |                 |


b) Write the structural formula for the following organic compound given below.

(4 marks)

i) 3-ethyle-4,5-dimethylheptane.

ii) 4-cyclopropyl-1-octyne.

2. a) Ammonia (weak base)  $\text{NH}_3$ . Determine the concentration of hydroxide ion and the pH of a 0.65M solution of ammonia? (5 marks)



b) Calculate the percentage ionization of ammonia ( $\text{NH}_3$ ) and explain why the value of 'x' in the ionization expression is often neglected. (3 marks)

c) Calculate the pH of a 0.4 M solution of sulfuric acid ( $\text{H}_2\text{SO}_4$ ). (3 marks)

d) Determine the concentration of a nitric acid ( $\text{HNO}_3$ ) solution when 20.0 mL of a 2.5 M solution is diluted to a final volume of 400.0 mL (3 marks)

3. A colorless liquid has a composition of 84.1% carbon and 15.9% hydrogen by mass.

i) Determine the empirical formula? (3 marks)

ii) Determine the molecular formula of this compound with a molar mass of 114.2 g/mol. Also, name the compound based on its molecular formula (3 marks)

4. When aqueous solution of Lead(II) nitrate  $[Pb(NO_3)_2(aq)]$  and potassium iodide  $[KI(aq)]$  are mixed, a precipitation reaction occurs, forming solid lead(II) iodide  $(PbI_2)$  and an aqueous solution. (4 marks)

Write the following equations for the reaction:

i) The balanced molecular equation

ii) The full ionic equation.

iii) The net ionic equation.

iv) Identify the spectator ions in the reaction.

|                       |                     |                       |                    |                       |                     |                       |                    |                       |                     |                       |                     |                      |                       |                       |                    |                      |                    |
|-----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|---------------------|----------------------|-----------------------|-----------------------|--------------------|----------------------|--------------------|
| 1<br>H<br>1.00794     |                     |                       |                    |                       |                     |                       |                    |                       |                     |                       |                     |                      |                       | 2<br>He<br>4.002602   |                    |                      |                    |
| 3<br>Li<br>6.941      | 4<br>Be<br>9.012182 |                       |                    |                       |                     |                       |                    |                       |                     |                       |                     |                      |                       |                       |                    |                      |                    |
| 11<br>Na<br>22.989770 | 12<br>Mg<br>24.3050 |                       |                    |                       |                     |                       |                    |                       |                     |                       |                     |                      |                       |                       |                    |                      |                    |
| 19<br>K<br>39.0983    | 20<br>Ca<br>40.078  | 21<br>Sc<br>44.955910 | 22<br>Ti<br>47.867 | 23<br>V<br>50.9415    | 24<br>Cr<br>51.9961 | 25<br>Mn<br>54.938049 | 26<br>Fe<br>55.845 | 27<br>Co<br>58.933200 | 28<br>Ni<br>58.6534 | 29<br>Cu<br>63.545    | 30<br>Zn<br>65.39   | 31<br>Ga<br>69.723   | 32<br>Ge<br>72.61     | 33<br>As<br>74.92160  | 34<br>Se<br>78.96  | 35<br>Br<br>79.504   | 36<br>Kr<br>83.80  |
| 37<br>Rb<br>85.4678   | 38<br>Sr<br>87.62   | 39<br>Y<br>88.90585   | 40<br>Zr<br>91.224 | 41<br>Nb<br>92.90638  | 42<br>Mo<br>95.94   | 43<br>Tc<br>(98)      | 44<br>Ru<br>101.07 | 45<br>Rh<br>102.90550 | 46<br>Pd<br>106.42  | 47<br>Ag<br>196.56655 | 48<br>Cd<br>112.411 | 49<br>In<br>114.818  | 50<br>Sn<br>118.710   | 51<br>Sb<br>121.760   | 52<br>Te<br>127.60 | 53<br>I<br>126.90447 | 54<br>Xe<br>131.29 |
| 55<br>Cs<br>132.90545 | 56<br>Ba<br>137.327 | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.94.79 | 74<br>W<br>183.84   | 75<br>Re<br>186.207   | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217   | 78<br>Pt<br>195.078 | 79<br>Au<br>196.56655 | 80<br>Hg<br>200.59  | 81<br>Tl<br>204.3833 | 82<br>Pb<br>207.2     | 83<br>Bi<br>208.58038 | 84<br>Po<br>(209)  | 85<br>At<br>(210)    | 86<br>Rn<br>(222)  |
| 87<br>Fr<br>(223)     | 88<br>Ra<br>(226)   | 89<br>Ac<br>(227)     | 104<br>Rf<br>(261) | 105<br>Db<br>(262)    | 106<br>Sg<br>(263)  | 107<br>Bh<br>(262)    | 108<br>Hs<br>(265) | 109<br>Mt<br>(266)    | 110<br>(269)        | 111<br>(272)          | 112<br>(277)        |                      | 114<br>(289)<br>(287) |                       | 116<br>(289)       |                      | 118<br>(293)       |

|                      |                        |                     |                   |                    |                     |                    |                       |                    |                       |                    |                       |                    |                     |
|----------------------|------------------------|---------------------|-------------------|--------------------|---------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|---------------------|
| 58<br>Ce<br>140.116  | 59<br>Pr<br>140.50765  | 60<br>Nd<br>144.24  | 61<br>Pm<br>(145) | 62<br>Sm<br>150.36 | 63<br>Eu<br>151.964 | 64<br>Gd<br>157.25 | 65<br>Tb<br>158.92534 | 66<br>Dy<br>162.50 | 67<br>Ho<br>164.93032 | 68<br>Er<br>167.26 | 69<br>Tm<br>168.93421 | 70<br>Yb<br>173.04 | 71<br>Lu<br>174.967 |
| 90<br>Th<br>232.0381 | 91<br>Pa<br>231.035888 | 92<br>U<br>238.0289 | 93<br>Np<br>(237) | 94<br>Pu<br>(244)  | 95<br>Am<br>(243)   | 96<br>Cm<br>(247)  | 97<br>Bk<br>(247)     | 98<br>Cf<br>(251)  | 99<br>Es<br>(252)     | 100<br>Fm<br>(257) | 101<br>Md<br>(258)    | 102<br>No<br>(259) | 103<br>Lr<br>(262)  |

This Photo by Unknown Author is licensed under [CC BY-SA-NC](https://creativecommons.org/licenses/by-sa/4.0/)

| Q #           | MLO Addressee d | Complexity Level  | Mark      | Remark |
|---------------|-----------------|-------------------|-----------|--------|
| 1-b,c,f       | <b>MLO 2</b>    | Apply             | <b>3</b>  |        |
| 1-a,d,e       | <b>MLO 3</b>    | Knowledge         | <b>3</b>  |        |
| 2-1-a         | <b>MLO 2</b>    | analyse           | <b>6</b>  |        |
| 2-1-bi+ii     | <b>MLO 2</b>    | Apply             | <b>4</b>  |        |
| 2-2-a,b,c     | <b>MLO2</b>     | Apply + knowledge | <b>11</b> |        |
| 2-2-d         | <b>MLO3</b>     | knowledge         | <b>3</b>  |        |
| 2-3-a-1,2     | <b>MLO2</b>     | Apply             | <b>6</b>  |        |
| 2-4-a-1,2,3,4 | <b>MLO 3</b>    | Analyse           | <b>4</b>  |        |



