

Final Exam
DMATH-III: MATH 3
Spring 2025

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration:

2.5 hours

Instructor's Name:

Dr. Rokhsaneh Yousef Zehi

Exam Date:

17/06/2025

Program:

DO

	40
	10

Student Information

Name:

ID:

Signature:

Invigilator

Initials:

Student ID checked

Time received:

Question 1**[4 marks]**

After a power failure on a cargo ship, the engine room's cooling system shuts down, and the temperature inside the engine room starts rising. The temperature T (in $^{\circ}\text{C}$) at time t (in hours) after the power failure is modeled by the equation:

$$T(t) = \frac{3t^2 + 4}{(2t + 3)^3}$$

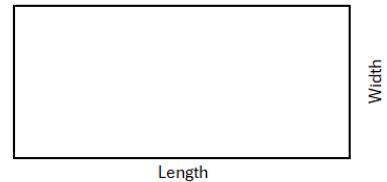
Determine the rate of change of temperature with respect to time at $t = 4$ hours.

Question 2**[5 marks]**

Given the following implicit function

$$2x^2 + 3y^2 = xy^2 + 4$$

(a) Determine the slope of the tangent line at the point (1,3). (3 marks)


(b) Obtain the equation of the normal line to the curve at the point (1,3). (2 marks)

Question 3**[5 marks]**

Two cruise ships depart from Sohar, Oman, at 03:00 PM. Ship A travels **north** toward Khasab at **20 km/h**, and Ship B travels **east** toward Sur at **35 km/h**. How fast are the two cargo ships moving apart at 07:00 PM?

Question 4**[6 marks]**

A marine researcher encloses a rectangular corral with 900 ft of fencing. Find the maximum possible area of corral.

Question 5**[5 marks]**

The Total electric charge Q (in C) to pass a point in the circuit from time t_1 to t_2 is

$$Q = \int_{t_1}^{t_2} 3t \sqrt{t^2 + 1} dt$$

Determine the electric charge from $t_1 = 0s$ to $t_2 = 3s$.

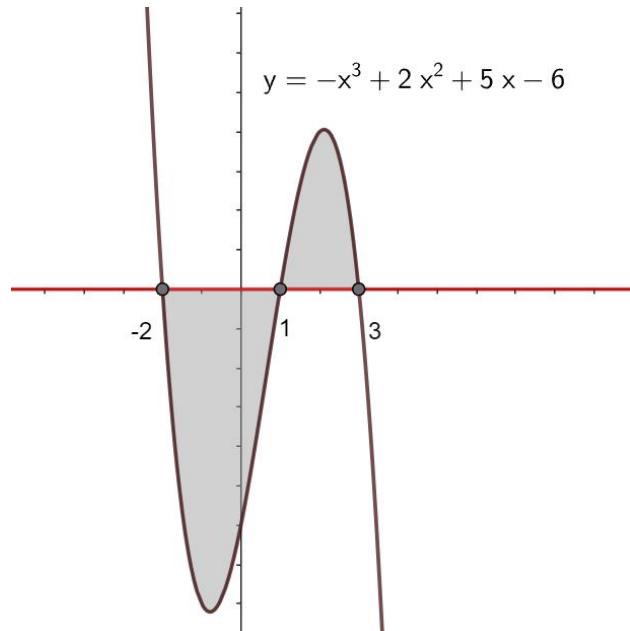
Question 6**[5 marks]**

Approximate the value of the definite integral

$$\int_2^5 \frac{10}{1+x^2} dx$$

using the **Simpson's Rule** with $n = 6$ subintervals. Write your answer correct to 3 decimal places.

Question 7**[5 marks]**


A ship's fuel tank is modeled by revolving the region bounded by the graph of

$$y = 3\sqrt{10 - x^2}$$

about the x -axis, where x and y are measured in meters. Find the volume of the fuel tank where $x = 0$ to $x = 3$.

Question 8**[5 marks]**

Determine the area enclosed by the curve $y = -x^3 + 2x^2 + 5x - 6$ between $x = -2$ to $x = 3$.

This page is for rough work.

Formula sheet:

Product Rule	$\frac{dy}{dx} = u'v + v'u$
Quotient Rule	$\frac{dy}{dx} = \frac{u'v - v'u}{v^2}$
Perimeter of rectangle	$P = 2(x + y)$
Area of rectangle	$A = xy$
Simpson's rule	$\int_a^b f(x)dx \approx \frac{h}{3} [y_0 + 4y_1 + 2y_2 + \dots + 4y_{n-1} + y_n]$

MLO and Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	2,3	Application, Analysis	4	
2	1,2	Application	5	
3	3	Analysis	6	
4	2,3	Application, Analysis	5	
5	1,2	Application	5	
6	1	Application	5	
7	2,3	Application, Analysis	5	
8	1	Application	5	

References:

1. J. Washington, A., 2014. Basic Technical Mathematics with Calculus. 10 ed. Harlow: Pearson Education Limited.
2. Stewart, J., 2008. *Calculus: Early Transcendentals*. 6th ed. Boston: Brooks/Cole.