

ACADEMIC YEAR 2023 - 2024

Program	Semester	Term	Paper
FOUNDATION	1	2	MIDTERM
MODULE NAME:	BASIC MATHEMATICS II		
MODULE CODE:	FMTH004	EXAM DATE:	03/01/2024
INSTRUCTOR's NAME:	Muhammad Kazam		
	DURATION: 1 $\frac{1}{2}$ hrs.		

Questions to be answered on: <input checked="" type="checkbox"/> Space provided on the question paper	Allowed tools: Pen, Pencil & Calculator	Number of pages (Incl. cover page): 07
---	---	---

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers must be written **in English**.
- Write all the answers **in blue or black pen only**.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Cheating / copying is not allowed and will result in failing the exam.

FINAL MARKS	
STUDENT NAME:	
STUDENT ID:	
CLASS:	20

Number of answer scripts:.....

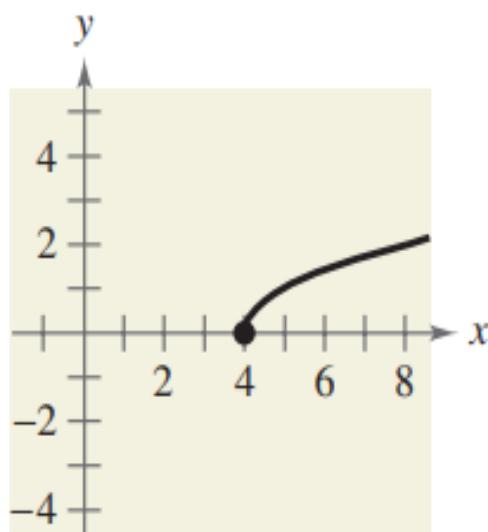
Invigilator:.....

Student's signature:

Time of receipt:.....

Question 1

[2 Marks]


Use the discriminant to determine the number of real solutions of the following equation. Do not solve.

$$4x^2 + 5x - \frac{13}{4} = 0$$

Question 2

[1 Mark]

The following graph is symmetric with respect to x -axis. Complete the graph using the symmetry.

(Sullivan, 2018)

Question 3

[4 Marks]

Show that the equation given below represents a circle and find the center and radius of the circle.

$$x^2 + y^2 - 9x = 7 - 4y$$

Question 4

[4 Marks]

Solve linear inequality. Express the solution using interval notation and graph the solution set.

$$\frac{1}{3} \leq \frac{5-2x}{3} \leq \frac{1}{2}$$

Question 5

[5 Marks]

Find all real solutions of the following equation.

$$\frac{x}{2x+7} - \frac{x+1}{x+3} = 1$$

Question 6

[4 Marks]

The electricity bill cost (C) of a customer varies between OMR. 50 and OMR. 90. The bill is made up of a charge of OMR. 10 and a cost of 200 baisas per kilowatt hour of electricity. Write down an inequality and calculate the range of kilowatt hour. (OMR. 1 = 1000 baisas)

Formula Sheet

$(A + B)(A - B) = A^2 - B^2$
$(A + B)^2 = A^2 + 2AB + B^2$
$(A - B)^2 = A^2 - 2AB + B^2$
$(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$
$(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$
$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$
$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$

Quadratic formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Distance formulas:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

MLO & Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	2	Understanding/ Application	2	Expect 100% to solve
2	5	Understanding	1	Expect 100% to solve
3	4	Application	4	Expect 90% to solve
4	1	Understanding/ Application	4	Expect 80% to solve
5	2	Understanding/ Application	5	Expect 60% to solve
6	3	Application	4	Expect 80% to solve

Reference:

Sullivan, M. (2018). *Precalculus* (10th ed.). Pearson.