

Final Exam
MMATH-I: MATH-I
Fall 2024

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration:

2 hours

Instructor's Name:

Dr. Taofeek Olanrewaju Alade

Exam Date:

13/01/2025

Program:

ME

	40
	10

Student Information

Name:

ID:

Signature:

Invigilator

Initials:

Student ID checked

Time received:

Question 1**[8 marks]**

a. In a ship engine system, the motion of a piston is described by the equation:

$$f(t) = \cos 2t - 2 \sin 2t$$

Express the $\cos 2t - 2 \sin 2t$ in the form of $A \sin(\omega t + \alpha)$, where $\alpha \geq 0$. (5 marks)

b. Show that

$$\frac{\sin 3x}{\sin 2x} = 2 \cos x - \frac{1}{2 \cos x} \quad (3 \text{ marks})$$

Question 2**[6 marks]**

A voltage source $V(t)$ varies with time t , according to

$$V(t) = 75 \sin \left(\frac{\pi t}{2} + 100 \right)$$

State:

- (a) the angular frequency (1 mark)
- (b) the phase (1 mark)
- (c) the amplitude (1 mark)
- (d) the period (1 mark)
- (e) the time displacement (1 mark)
- (f) the frequency of the voltage. (1 mark)

Question 3**[6 marks]**

During ship engine performance analysis, the vibrations (X) generated at various frequencies (f) are recorded as follows:

Vibration (X)	1	2	3	4	5	6	7	8	9	10
Frequency (f)	1	2	1	3	1	1	2	1	2	1

Using this data, calculate the standard deviation of the vibration intensities to assess the engine's performance consistency.

Question 4**[7 marks]**

In a marine navigation system, a triangular marker arrangement is used to guide ships. The triangular arrangement $\triangle PQR$ has a right angle at R , with an angle at P of 62° , and the distance $PR = 11\text{cm}$

Sketch the triangular marker system and calculate: (1 mark)

- a. The distance PQ . (2 marks)
- b. The distance QR . (2 marks)
- c. The angle at Q . (2 marks)

Question 5**[6 marks]**

A.) In a marine logistics study, the average monthly weight of waste paper collected from a ship's crew is found to be 28 pounds, with a standard deviation of 2 pounds. Assume the waste weight is approximately normally distributed. If a ship is selected at random, calculate the probability of:

- i. Collecting between 27 and 31 pounds of waste paper per month. (1.5 marks)
- ii. Collecting more than 30.2 pounds of waste paper per month. (1.5 marks)

B.) In a marine engineering project, the cost of constructing mooring systems for ships is normally distributed with an average cost of \$246,300 and a standard deviation of \$15,000. Calculate the minimum and maximum costs that fall within the middle 80% range of the market to guide contractors in pricing these systems. (3 marks)

Question 6**[7 marks]**

In designing a ship's hull, the waterline shape of a section is given by:

$$y = 3x^4 - x^2, 0 \leq x \leq 3$$

Use the Trapezoidal rule with 6 strips to estimate the total area of this section. Round your answer to two decimal places.

Trigonometrical identities

$$\sin(A + B) = \sin A \cos B + \sin B \cos A$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\sin(A - B) = \sin A \cos B - \sin B \cos A$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\cos^2 A + \sin^2 A = 1$$

Law of Cosine Rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Law of Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Napier's Rules

Sine middle part = Product cosines of opposite parts

Sine middle part = Product of tangents of adjacent parts

Trapezoidal Rule

$$Area = \frac{h}{2} [y_0 + 2(y_1 + y_2 + y_3 + \dots + y_{n-1}) + y_n]$$

Simpson Rule

$$Area = \frac{h}{3} [y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n]$$

Standard deviation

$$\sqrt{\frac{\sum f(x - \bar{x})^2}{\sum f}}$$

TABLE E The Standard Normal Distribution

Cumulative Standard Normal Distribution										
<i>z</i>	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

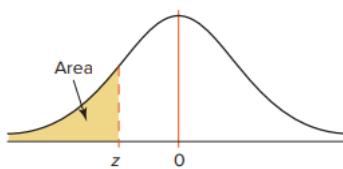

For *z* values less than -3.49, use 0.0001.

TABLE E (continued)

Cumulative Standard Normal Distribution

<i>z</i>	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

For *z* values greater than 3.49, use 0.9999.

Source: Elementary Statistics- A step by step approach- tenth edition-Allan G. Bluman

MLO & Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
4, 5	2,5	Application	13	--
6	1	Understanding	7	--
2	1	Remembering	6	--
1	4	Evaluating	8	--
3	3	Analysing	6	--