

FINAL EXAM
MMATH-II: MATHEMATICS-2
Spring – 2025

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit and sign the question paper to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration: 2 hours
Instructor's Name: Muhammad Kazam
Exam Date: 18/06/2025
Program: ME

	40
	10

Student Information

Name:	<input type="text"/>	ID:	<input type="text"/>
Signature:	<input type="text"/>		

Invigilator

Initials:	<input type="text"/>	<input type="checkbox"/> Student ID checked
Time received:	<input type="text"/>	

Question 1**[4 Marks]**

Three vectors u , v , and w are given below.

$$u = i - j + k, \quad v = -j + k, \quad w = i + j + k$$

a. Determine the scalar triple product $u \cdot (v \times w)$.

(3 marks)

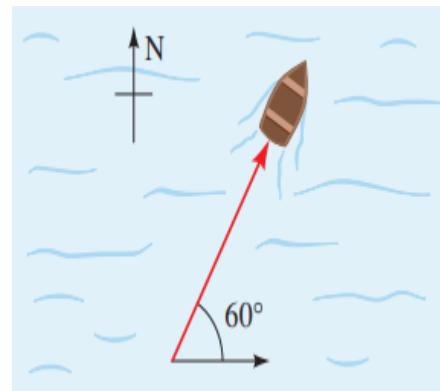
b. State whether the vectors are coplanar or not.

(0.5 mark)

c. If not, find the volume of the parallelepiped that they determine.

(0.5 mark)

Question 2**[3 Marks]**


Find the area of ΔPQR whose vertices are given below.

$$P(3, -2, 6), Q(-1, -4, -6), R(3, 4, 6)$$

Question 3**[8 Marks]**

A straight river flows east at a speed of $10 \text{ km}/\text{h}$. A boater starts at the south shore of the river and head in a direction 60° from the shore as shown in the figure. The motorboat has a speed of $20 \text{ km}/\text{h}$ relative to the water.

a. Express the velocity of the river as a vector in component form.

(2 marks)

(Stewart, Redlin and Watson, 2017)

b. Express the velocity of the motorboat relative to the water as a vector in component form.

(2 marks)

c. Determine the true velocity of the motorboat.

(1 mark)

d. Determine the true speed and direction of the motorboat.

(3 marks)

Question 4**[3 Marks]**

For the function given below, determine each limit, if it exists. If it does not exist, explain why.

$$f(x) = \begin{cases} 2 & \text{if } x < -1 \\ x^2 & \text{if } -1 \leq x \leq 2 \\ x + 2 & \text{if } x > 2 \end{cases}$$

a. $\lim_{x \rightarrow -1^-} f(x)$

b. $\lim_{x \rightarrow -1^+} f(x)$

c. $\lim_{x \rightarrow -1} f(x)$

d. $\lim_{x \rightarrow 2} f(x)$

e. $\lim_{x \rightarrow 0} f(x)$

f. $\lim_{x \rightarrow 3} [f(x)]^2$

Question 5**[10 Marks]**

Determine the limit, if it exists.

a. $\lim_{x \rightarrow 0} \frac{1 - \cos x}{\sin x}$ **(3 marks)**

b. $\lim_{x \rightarrow \infty} \left(\frac{1}{x} - \frac{2x}{x-1} \right)$ **(3 marks)**

c. $\lim_{x \rightarrow -2} \frac{x^2 - 4}{x^2 + x - 2}$ **(4 marks)**

Question 6**[5 Marks]**

Calculate the inverse of the matrix given below.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 2 & 5 & 6 \end{bmatrix}$$

Question 7**[7 Marks]**

Solve the following system of equations by Gauss method or Cramer's rule.

$$\begin{cases} 2x + 3z = 5 \\ x + y + 6z = 0 \\ 3x - y + z = 5 \end{cases}$$

MLO & Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	1 & 2	Understanding	4	Expect 100% to solve
2	3	Understanding	3	Expect 90% to solve
3	2 & 4	Application	8	Expect 100% to solve
4	5	Evaluating /Application	3	Expect 80% to solve
5	1, 2 & 5	Understanding / Application	10	Expect 90% to solve
6	4	Evaluating /Application	5	Expect 80% to solve
7	4 & 5	Application	7	Expect 70% to solve

Reference:

Stewart, J., Redlin, L. and Watson, S. (2017) *Precalculus Mathematics for Calculus*. 7th edn. Cengage.