

FINAL EXAM
MMATH-II: MATHEMATICS-2
Spring – 2025

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit and sign the question paper to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration: 2 hours
Instructor's Name: Muhammad Kazam
Exam Date: 18/06/2025
Program: ME

	40
	10

Student Information

Name:	<input type="text"/>	ID:	<input type="text"/>
Signature:	<input type="text"/>		

Invigilator

Initials:	<input type="text"/>	<input type="checkbox"/> Student ID checked
Time received:	<input type="text"/>	

Question 1**[3 Marks]**

Find the direction angles of the vector given below, rounded to the nearest degree.

$$v = 2i + 3j - 6k$$

Question 2**[4 Marks]**

A ship is sailing in a direction $N30^\circ E$ at a speed of 500 km/h. Determine the north and east components of the velocity.

Question 3**[5 Marks]**

Two vectors u and v are given below.

$$u = \langle 1, 1, -1 \rangle \text{ and } v = \langle -1, 1, -1 \rangle$$

a. Calculate a vector perpendicular to both u and v .

(3 marks)

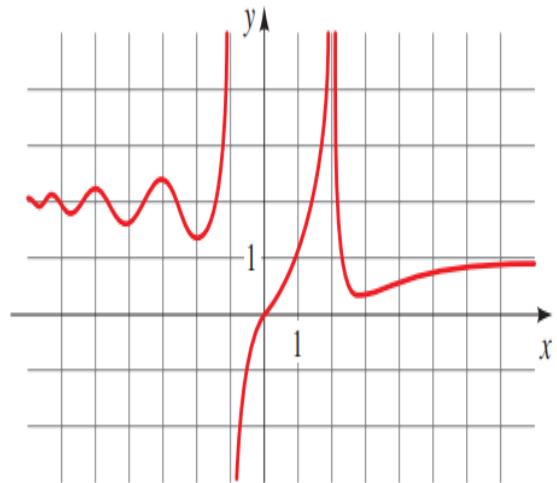
b. Find a unit vector orthogonal (perpendicular) to both u and v .

(2 marks)

Question 4**[3 Marks]**

For the function f whose graph is given below, state the value of the given quantity if it exists. If it does not exist, explain why.

a. $\lim_{x \rightarrow 2^+} f(x)$


b. $\lim_{x \rightarrow -3^-} f(x)$

c. $\lim_{x \rightarrow -3^+} f(x)$

d. $\lim_{x \rightarrow -3} f(x)$

e. $\lim_{x \rightarrow 0} f(x)$

f. $\lim_{x \rightarrow \infty} f(x)$

Question 5**[10 Marks]**

Determine the limit, if it exists.

a. $\lim_{t \rightarrow 0} \frac{\sin 3t}{2t}$ **(3 marks)**

b. $\lim_{x \rightarrow \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$ **(3 marks)**

c. $\lim_{x \rightarrow 0} \frac{\sqrt{x+9}-3}{x}$

(4 marks)

Question 6**[5 Marks]**

Calculate the inverse of the matrix given below.

$$\begin{bmatrix} 2 & 4 & 1 \\ -1 & 1 & -1 \\ 1 & 4 & 0 \end{bmatrix}$$

Question 7**[10 Marks]**

A shipyard performs maintenance on propellers, engines, and hull repairs. The cost of maintaining a propeller is \$800, an engine is \$1500, and a hull repair is \$2000. In one month, they serviced 30 components, earning \$37,000. There were three times as many propellers serviced as hull repairs.

- a.** Formulate a system of equations. **(2 marks)**
- b.** Use Gauss method or Cramer's rule to determine the number of each component serviced. **(8 marks)**

MLO & Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	1 & 2	Understanding	3	Expect 100% to solve
2	3	Understanding	4	Expect 90% to solve
3	2 & 4	Application	5	Expect 100% to solve
4	5	Evaluating /Application	3	Expect 80% to solve
5	1, 2 & 5	Understanding / Application	10	Expect 90% to solve
6	4	Evaluating /Application	5	Expect 80% to solve
7	4 & 5	Application	10	Expect 70% to solve

Reference: Washington, A. (2014) *Basic Technical Mathematics with Calculus*. 10th edn. Harlow: Pearson.