

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
MEO	1	2	MAIN
MODULE NAME:	Math 2		
MODULE CODE:	MMATH-II	EXAM DATE:	22.05.2024
INSTRUCTOR's NAME:	Muhammad Kazam Razaq	DURATION:	2 hrs.

Questions to be answered on: <input checked="" type="checkbox"/> Space provided on the question paper	Allowed tools: Pen, Calculator & Pencil (only for drawing)	Number of pages (Incl. cover page): 14
---	--	---

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

STUDENT NAME: _____

STUDENT ID: _____

FINAL MARKS

40

Number of answer scripts:.....

Invigilator:.....

Student's signature:

Time of receipt:.....

ANSWER ALL THE QUESTIONS

Show all the calculation steps in the given space.

1.

[10 Marks]

a. Find the angle between \mathbf{u} and \mathbf{v} , rounded to the nearest degree.

(3 marks)

$$\mathbf{u} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}, \quad \mathbf{v} = 4\mathbf{i} - 3\mathbf{k}$$

b. Calculate the direction angles of the vector given below.

(3 marks)

$$3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$$

c. Calculate the area of ΔPQR with vertices given below. **(4 marks)**

$P(3, -2, 6)$, $Q(-1, -4, -6)$, $R(-3, 4, 2)$

2. Evaluate the limits given below.

[10 Marks]

a. $\lim_{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}$

(4 marks)

b. $\lim_{x \rightarrow 0} \frac{\sin 3x}{\sin 2x}$ (3 marks)

c. $\lim_{x \rightarrow \infty} \left(\frac{x-1}{x+1} + 6 \right)$ (3 marks)

3.

[10 marks]

a. Simplify the expression given below and write the result in the form $a + bj$.

(3 marks)

$$\frac{5-j}{3+4j}$$

b. In an alternating-current circuit, the voltage E is given by $E = IZ$ where I is the current (in A) and Z is the impedance (in Ω). If $I = (0.835 - 0.427j)A$ and $Z = (250 + 170j)\Omega$, calculate the complex number representation for E . **(2 marks)**

c. Use DeMoivre's theorem to find all the cube roots of $3 - 4j$.

(5 marks)

4.

[10 marks]

a. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix}$, prove that $(AB)^{-1} = B^{-1}A^{-1}$ (4 marks)

b. Three machines together produce 650 parts each hour. Twice the production of the second machine is $10 \text{ parts}/\text{h}$ more than the sum of the production of the other two machines. If the first operates for 3 h and the others operate for 2 h , 1550 parts are produced. Write down the system of equations for the production rate of machines and use **Cramer's rule** or **Gauss elimination** method to determine the production rate of each machine. **(6 marks)**

MLO & Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	2	Application	10	Expect 100% to solve
2	1	Understanding	10	Expect 80% to solve
3	1	Understanding	10	Expect 70% to solve
4	4	Evaluating	10	Expect 100% to solve