

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
MEO	2	4	MAIN
MODULE NAME:	MATHEMATICS - III		
MODULE CODE:	MMATH - III	EXAM DATE:	21.05.2024
INSTRUCTOR's NAME:	Dr. Yaqoob Mubarak Al Rahbi	DURATION:	2 hrs.

Questions to be answered on: <input checked="" type="checkbox"/> Space provided on the question paper	Allowed tools: Pen, Pencil & Calculator	Number of pages (Incl. cover page): 12
---	---	---

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS	
STUDENT NAME:	40
STUDENT ID:	10

Number of answer scripts:.....

Invigilator:.....

Student's signature:

Time of receipt:.....

ANSWER ALL THE QUESTIONS

1. Find the derivative of the following function by using the definition.

[4 Marks]

$$f(x) = x^2 - 7$$

2. Evaluate the following indefinite integrals.

[6 Marks]

I. $\int (x^2 - 3x^5) dx$

II. $\int (x^4 + 3)^4 (8x^3) dx$

III. $\int_1^5 9\sqrt{3x + 1} dx$

3. Determine one real root of

[4 Marks]

$$x^3 + 4 = 0$$

by using Newton's method (keep your results in 4 decimal places).

4. A package of relief supplies is dropped and moves according to the parametric equations $x = 45t$ and $y = -4.9t^2$ (x and y in m, t in s). **[4 Marks]**

I. Find the magnitude of the velocity when $t = 3$ s.

II. Find the direction of the velocity when $t = 3$ s.

5. Find the area under the curve

[6 Marks]

$$y = \frac{1}{x^2}$$

between $x = 1$ and $x = 5$.

6. Find the volume generated by revolving the region bounded by
 $y = 4 - 2x$
, and $y = 0$ about the $x - axis$.

[4 Marks]

7. A wheel that can be represented by

[4 Marks]

$$x^2 + y^2 = 25$$

is rotating when a particle is ejected tangentially from the point (4, 3).

- Find the slope of the line along which the particle traveled.
- Find the tangent line of the wheel equation.

8. Find a general solution of the following ordinary differential equation.

[4 Marks]

$$y^3 y' + x^3 = 0$$

9. Solve the initial value problem

[4 Marks]

$$y' + 2y = 4e^{2x}, y(0) = 3.$$

Draft Paper

Formulas sheet:

No Formula

1) Definition of Derivative:

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$$

2) Instantaneous Velocity:

$$v = \lim_{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$$

3) $\frac{d}{dx}(c) = 0$, where c is any constant number.

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(cu) = c \frac{du}{dx}$$

$$\frac{d}{dx}(u + v) = \frac{du}{dx} + \frac{dv}{dx}$$

4) Product rule:

$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

5) Quotient rule:

$$\frac{d(\frac{u}{v})}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

6) Chain rule:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

7) Power of a function rule:

$$\frac{d}{dx}(u^n) = nu^{n-1} \left(\frac{du}{dx} \right)$$

8) $y - y_1 = m(x - x_1)$

$$y - y_1 = \frac{-1}{m}(x - x_1)$$