

Final Exam
PMATH-I.II: Arithmetics II
Spring 2025

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration: 2 hours
Instructor's Name: Muhammad Javed
Exam Date: 19/06/2025
Program: LTM

	40
	10

Student Information

Name: ID:
Signature:

Invigilator

Initials: Student ID checked
Time received:

Question 1**[10 marks]**

Determine the derivative of the following function among the Product, Quotient and chain rules.

a.
$$h = \frac{3x^2 + 5x - 1}{x - 3}$$
 (5 marks)

b.
$$y = \sqrt[3]{(x^2 - 8)^2}$$
 (5 marks)

Question 2**[5 marks]**

Using definition method, determine the derivative

$$f(x) = x^2 - x - 3$$

Question 3**[5 marks]**

For the following cost function

$$c(q) = 3q - 3q^2 + q^3$$

Where q is the number of units?

- a. Determine the relative rate of change of $f(x)$ when $q = 10$. (4 marks)
- b. Calculate the percentage rate of change of $c(q)$ with respect to $q = 10$ up to 3 decimal places. (1 mark)

Question 4**[7 marks]**

For the following function,

$$f(x) = 2x^3 - 9x^2 + 12x$$

Determine the following

- a. The intervals on which the function is increasing and decreasing by using sign chart. (5 marks)
- b. The x values on which the relative extrema fall. (1 mark)
- c. The values of the relative extrema. (2 marks)

Question 5**[6 marks]**

A delivery truck on a logistics route has its **acceleration** (in km/h^2) modeled by:

$$y'' = -5x^2 + 2x,$$

where x is time in hours. At $x = 1$ hour, the truck's **velocity** is zero $y' = 0$ km/hour, and its **initial position** at $x = 0$ is $y = 3$ km. Drive an expression for the truck's position

Question 6**[7 marks]**

Evaluate the following integrals, showing all steps of the working process.

a.

(4 marks)

$$\left(\int_1^2 x d \right)^2 - \int_1^2 x^2 dx$$

b.

(3 marks)

$$\int_2^4 \frac{3}{(x-3)^2} dx$$

Rules

a. Derivative

1.	$\frac{d}{dx}(x^n) = nx^{n-1}$
2.	$(f \cdot g)' = f' \cdot g + f \cdot g'$
3.	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$

b. Integration

1	$\int x^n dx = \frac{x^{n+1}}{n+1} + c$
2.	$\int \frac{1}{x} dx = \ln x + c$
3.	$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$

MLO & Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	3	Understanding/Application	10	
2	1	Understanding	5	
3	2	Understanding /Application	5	
4	4	Application/Evaluating	7	
5	4	Evaluating	6	
6	3	Understanding /Application	7	