

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
PE	2	2	Main
MODULE NAME:	Analytical Chemistry		
MODULE CODE:	PT-TACHEM	EXAM DATE:	10/06/2024
INSTRUCTOR's NAME:	Dr. Muna Al-Hinai	DURATION:	2.5 hrs.

Questions to be answered on: <input checked="" type="checkbox"/> Space provided on the question paper	Allowed tools: Pen, Pencil & Calculator	Number of pages (Incl. cover page): 10
---	---	---

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS

STUDENT NAME:		40
STUDENT ID:		10

Number of answer scripts:.....

Invigilator:.....

Student's signature:

Time of receipt:.....

Question 1 Gravimetric Analysis (MLO 1, 3, 4, Understand, analyze, evaluate) (5 Marks)

Soluble organic carbon in sea water sample was analysed as follow: first the sample was treated with potassium sulphate ($K_2S_2O_8$) producing CO_2 which was trapped by a column of $NaOH$ - coated asbestos. 120 ppm carbon was determined when 8.735 g of seawater sample was analysed.

a. State the rule of potassium sulfate? Justify the requirement of this step. **(2 Mark)**

b. Determine the amount of $CO_2(g)$ that was produced in this analysis in milligrams. **(3 Marks)**

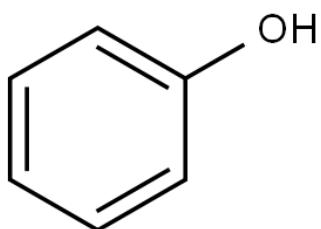
Question 2 Titration and Statistics (MLO 1, 2, 3, Understand, apply, analyze) (10 Marks)

(2-(N-morpholino)ethanesulfonic acid) is a weak acid abbreviated as MES ($K_a = 7.08 \times 10^{-7}$). A 50.00 mL sample of MES was titrated with 0.100 mol/L NaOH(aq) solution. The pH of the solution after addition of NaOH(aq) is reported in the Table below. Analyze the table answer the following questions.

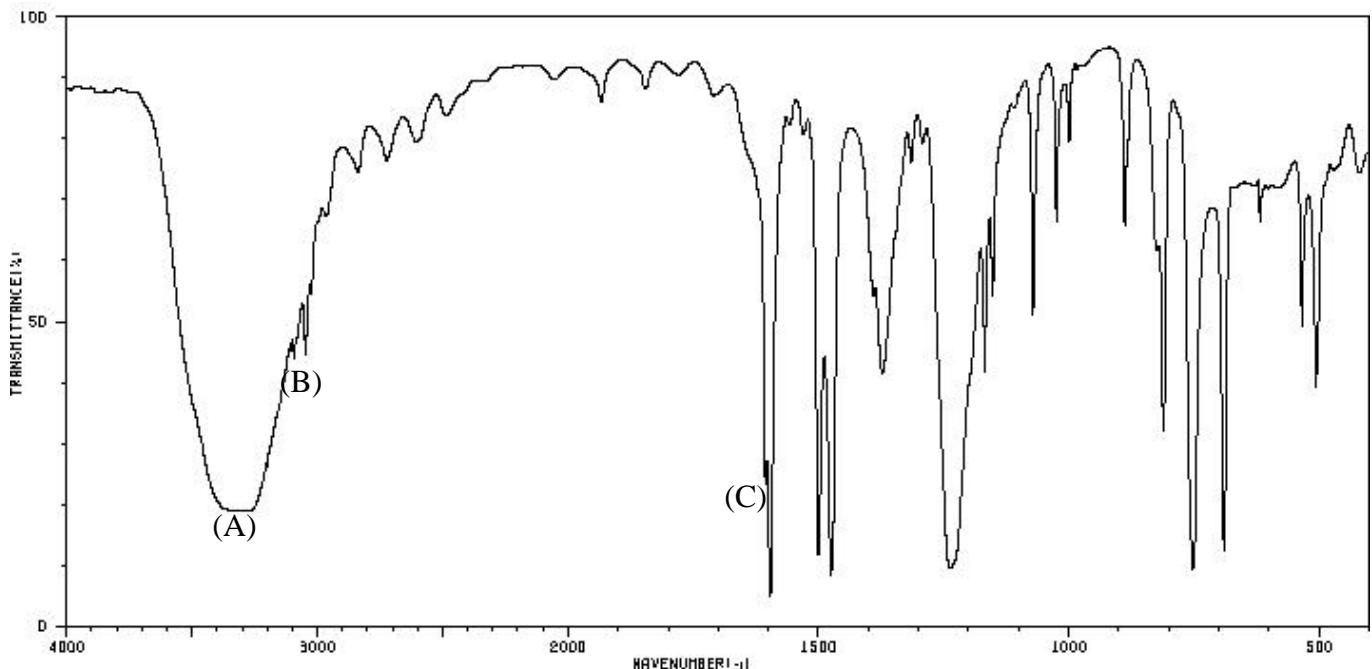
Volume of NaOH(aq)	pH
0.00	12.30
5.00	11.85
9.00	11.22
10.00	7.00
10.10	3.08
11.00	2.79

a. Construct the titration curve of MES with NaOH(aq). **(3 Marks)**

b. Determine the volume of NaOH(aq) at equivalence point. **(1 Mark)**


c. Calculate the concentration of MES. **(2 Marks)**

d. The experiment was repeated 3 times to get the average equivalence point. Analyze the results and then calculate the standard deviation for the volume measurement. **(4 Marks)**


Experiment	Volume of NaOH (aq) (mL)
1	9.90
2	10.00
3	10.10

Question 3 Spectroscopy (10 Marks) (MLO 2, 3, 4, analyze, apply, evaluate)

Phenolic compounds are one of the main contributors to water contamination worldwide. Phenols exists in water channels due to discharge from industrial, agricultural and pharmaceutical activities. These compounds are toxic causing serious long-lasting effects on human and animal health including cancer. UV-Visible spectroscopy and FTIR are used to analyze phenol in water. The structure of phenol (Mw 94.11 g/mol) and its FTIR spectrum are illustrated below.

Phenol (Mw 94.11 g/mol)

FTIR spectrum of phenol (Chemical book, 2017)

a. Analyze the FTIR spectrum of phenol and complete the table below. **(6 Marks)**

Peak	Wavenumber (cm ⁻¹)	Functional group	Energy of the light
A			
B			
C			

Show your caculation of the energy

b. 6.8 mg/ L phenol sample was anlayzed using UV- visible spectroscopy. The absorption was 0.12 at 270 nm that was measured using a 1.00 cm cuvette. Determine the molar aborptivity of phenol.

(2 Marks)

c. Explain the difference between UV- visible and FTIR radiations on phenol structure.**(2 Marks)**

Question 4 Gas Chromatography (15 Marks) (MLO 2, 3, 4, analyze, apply, evaluate)

Natural gas extraction and separation plants are essential for providing fuel gas and liquified products that support other industries. The composition of the gas should be monitored online during the extraction process through gas chromatography. The table below shows the composition of some of the components from NGLE project. Analyze the table and answer the following questions.

Eluted gas	Retention time (min)	% Concentration
N ₂	1.219	5.472
CH ₄	1.741	86.038
C ₂ H ₆	9.595	4.806
C ₃ H ₈	11.959	1.919
CO ₂	9.013	0.674

a. Construct a chromatogram for the separation of the components that are reported in the table. (**Hint pay attention to the retention time and the time difference between the components**).

(5 Marks)

b. Determine the retention factor for these components: **(3 Marks)**

Methane CH_4

Ethane C_2H_6

Propane C_3H_8

c. Determine the relative retention between ethane and methane and evaluate the separation efficiency. Justify your answer **(2 Marks)**

d. Determine the relative retention between propane and ethane and evaluate the separation efficiency. Justify your answer. **(2 Marks)**

e. By analyzing the retention time of the hydrocarbons that are reported in the table, suggest the mechanism of the separation. Justify your answer. **(2 Marks)**

FTIR Peaks Table

Functional Group	Wavenumber (cm ⁻¹)
OH stretching	3200- 3600
Aliphatic C-C-H stretching	3000-2840
Aromatic C=C-H stretching	3100-3000
C=O	1870-1540
C=C	1670- 1660
C-N	1340- 1250
S=O	1350- 1300
C-O	1310- 1020
N-H	3500

Constants

Plank's constant 6.626×10^{-34} J.s

Speed of light 2.98×10^8 m/s

References

Harries, D., Freeman, W.H., (2010) *Quantitative Chemical Analysis*. 8th ed. New York: W. H. Freeman and Company

Phenol(108-95-2) IR1, (2017), Chemical Book, Retrieved online on 8th June 2024 from:
https://www.chemicalbook.com/SpectrumEN_108-95-2_IR1.htm

Periodic Table of the Elements

18

1	H Hydrogen 1.008	2	He Helium 4.003
3	Li Lithium 6.941	4	Be Beryllium 9.012
11	Na Sodium 22.990	12	Mg Magnesium 24.305
19	K Potassium 39.098	20	Ca Calcium 40.078
37	Rb Rubidium 84.468	38	Sr Strontium 87.62
55	Cs Cesium 132.905	56	Ba Barium 137.327
87	Fr Francium 223.020	88	Ra Radium 226.025
57	La Lanthanum 138.906	58	Ce Cerium 140.115
89	Ac Actinium 227.028	90	Th Thorium 232.038
13	B Boron 10.811	14	C Carbon 12.011
13	Al Aluminum 26.982	14	Si Silicon 28.086
19	Fe Iron 55.933	21	Sc Scandium 44.956
39	Y Yttrium 88.906	40	Ti Titanium 47.88
56	Ba Lanthanides 137.327	57-71	Ta Tantalum 180.948
87	Ra Actinides 226.025	89-103	Hf Hafnium 178.49
13	N Nitrogen 14.007	22	V Vanadium 50.942
38	Sr Strontium 87.62	39	Y Yttrium 88.906
55	Cs Cesium 132.905	56	La Lanthanides 137.327
87	Fr Francium 223.020	88	Ra Radium 226.025
13	O Oxygen 15.999	14	Fe Iron 55.933
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	P Phosphorus 30.974	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	S Sulfur 32.066	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Cl Chlorine 35.453	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Ar Argon 39.948	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Ne Neon 20.180	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Kr Krypton 84.80	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Xe Xenon 131.29	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Rn Radon 222.018	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	At Astatine 209.987	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Uuo Ununoctium unknown	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13	Lu Lutetium 174.967	14	Cr Chromium 51.996
38	Y Yttrium 88.906	39	Sc Scandium 44.956
55	Cs Cesium 132.905	56	Ti Titanium 47.88
87	Fr Francium 223.020	88	Ra Radium 226.025
13			