

Final Exam
ANALYTICAL CHEMISTRY
Fall 2024

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration: 2 hours

Instructor's Name:

Exam Date: 05/01/2024

Program: PE

	40
	10

Student Information

Name:

ID:

Signature:

Invigilator

Initials:

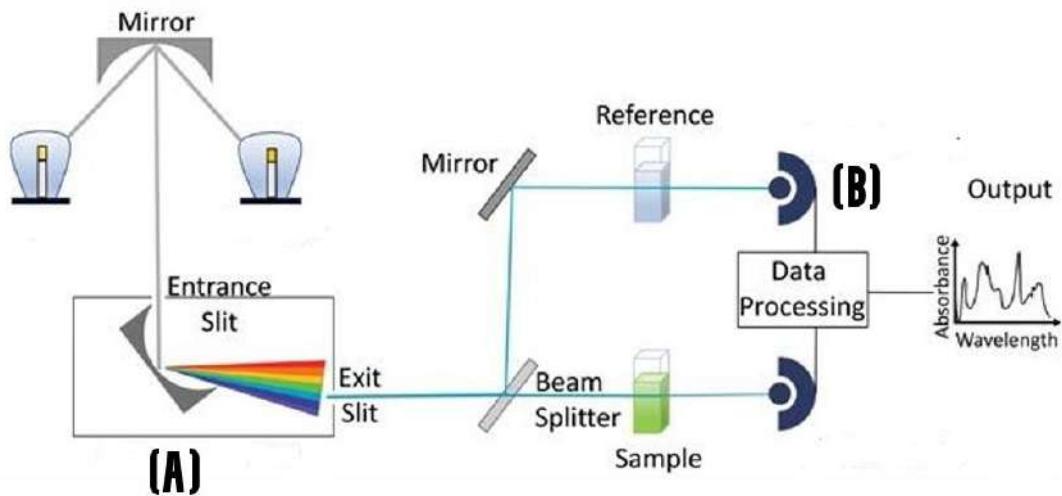
Student ID checked

Time received:

Question 1**[6 marks]**

Answer all the questions below:

Pure hexane has negligible ultraviolet absorbance above a wavelength of 200 nm. A solution prepared by dissolving 25.8 mg of benzene (C_6H_6) in hexane and diluting to 250.0 mL had an absorption peak at 256 nm and an absorbance of 0.266 in a 1.000 cm cell.


(a) Define UV-Vis Spectrophotometer. (2)

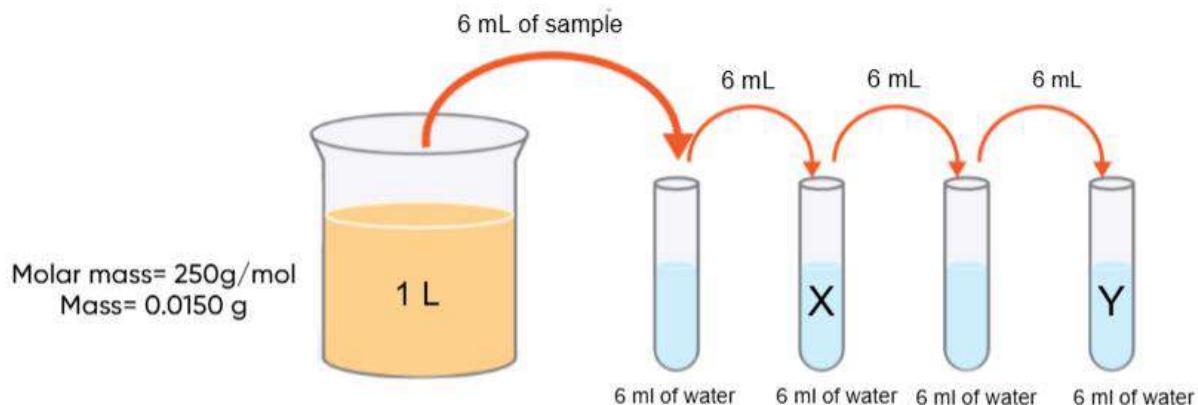
(b) Find the molar absorptivity of benzene at this wavelength. (2)

(c) During a gravimetric analysis of the same solution, the benzene was extracted and dried, yielding a residue of 0.0235 g. Verify whether the concentration determined gravimetrically matches the concentration based on UV-Vis spectrophotometric measurements. (2)

Question 2**[20 marks]**

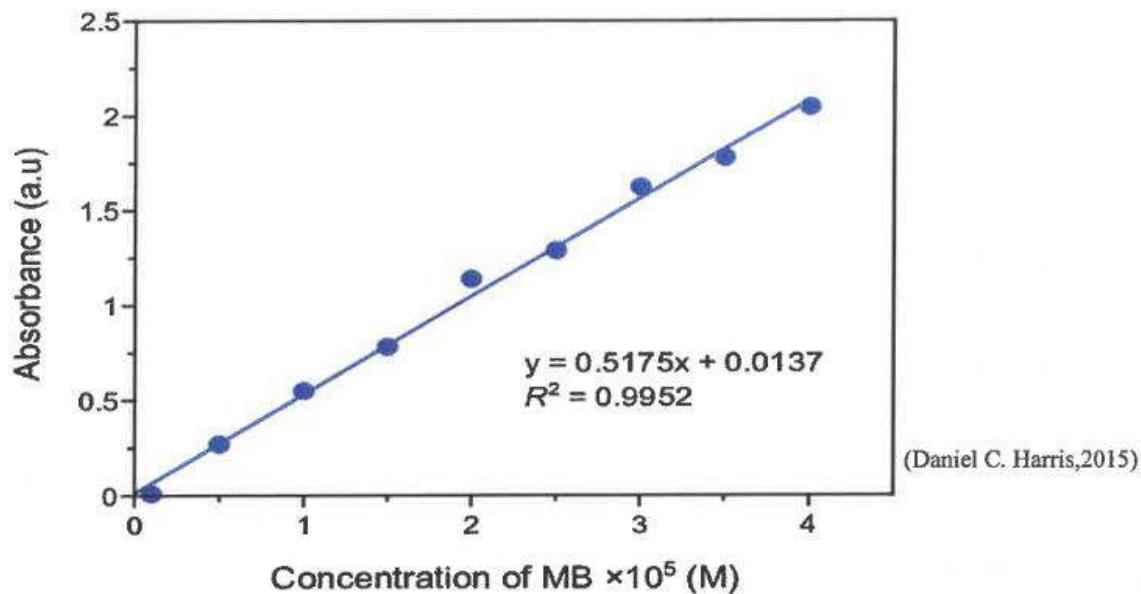
UV-Vis spectroscopy plays a critical role in monitoring the concentration of chemical substances, ensuring product quality, and optimizing production workflows.

(Daniel C. Harris, 2015)


(a) Explain the working principle of a spectrophotometer in detail.

(4)

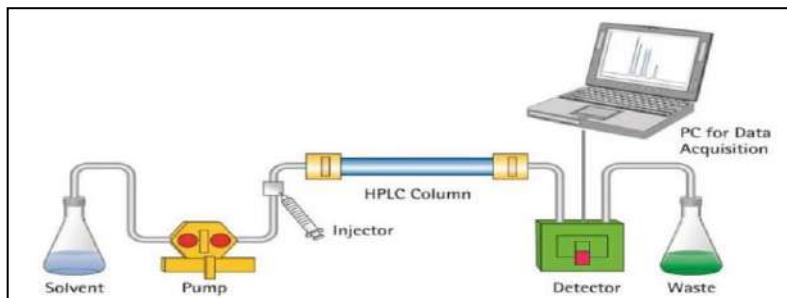
(b) Identify components (A) and (B) in the UV-Vis spectrometer diagram. Explain their specific roles in spectrochemical analysis. (4)


(c) Identify the types of radiation emitted by each lamp (UV or visible) in the diagram and explain the difference between the two types of radiation. (3)

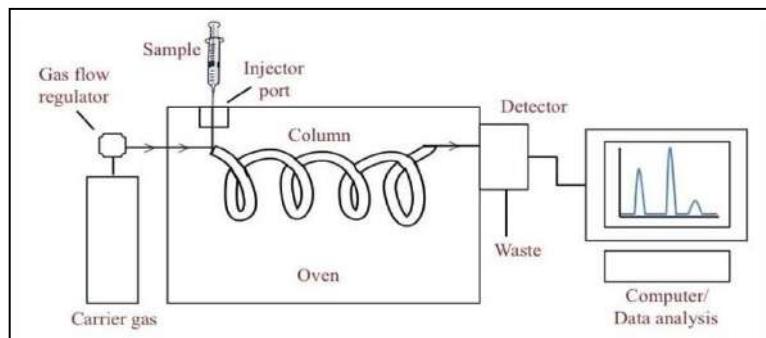
(d) Analyze the figure below, which illustrates the preparation of standard solutions for UV-Vis analysis. Using the given information, calculate the concentrations of samples X and Y. (5)

(trinset, 2024)

(e) The calibration curve shown below prepared using a standard solution, is utilized for quality control and process optimization in industrial applications involving methylene blue.



i. Explain the purpose of a calibration curve and describe how to construct one using a standard solution. (2)


ii. A methylene blue sample solution has an absorbance of 0.528 (a.u.) after being diluted by a factor of two. Calculate the concentration of the original solution before dilution. (2)

Question 3**[6 marks]**

Chromatography is a fundamental technique in analytical chemistry. Refer to the diagrams labeled A and B, which represent two types of instrumental chromatography, and answer the following:

(Daniel C. Harris, 2015)

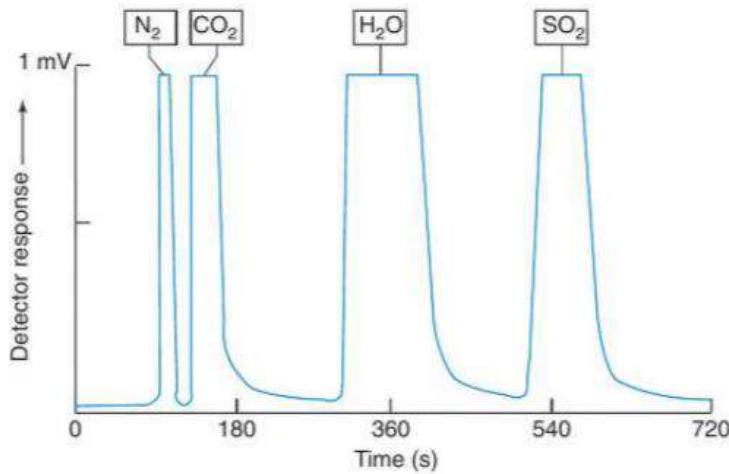
(A)

(Daniel C. Harris, 2015)

(B)

(a) Identify the techniques represented in diagrams A and B.

(2)

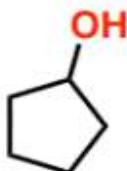

(b) Explain the working principles of technique B.

(2)

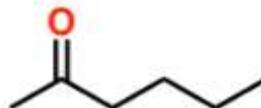
(c) Compare the two techniques, highlighting their key differences. (2)

Question 4**[4 marks]**

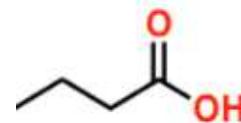
An elemental analyzer is used to determine the composition of a coal sample before it is used in a power plant. The chromatogram shows peaks for N_2 , CO_2 , H_2O , and SO_2 .

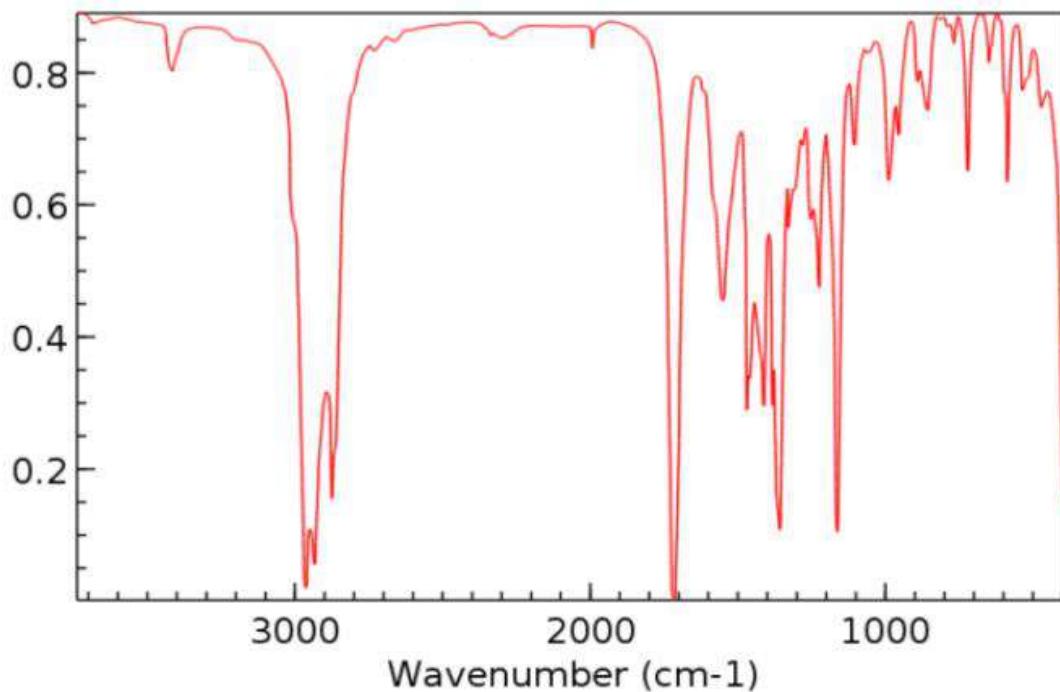

(Daniel C. Harris, 2015)

- Based on the diagram, Calculate the retention time for each compound (N_2 , CO_2 , and SO_2).
- Find the relative retention (α).

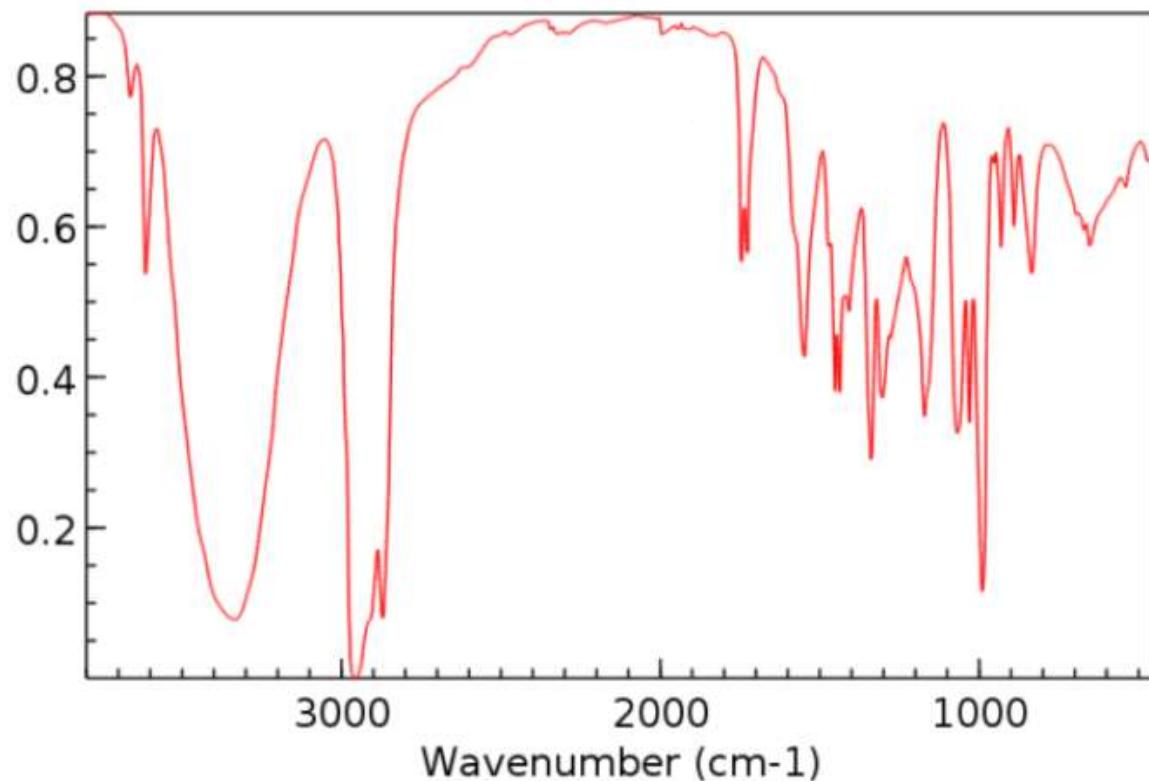

Question 5

[4 marks]


Among the three organic compounds (cyclopentanol, 2-hexanone, and carboxylic acid) identify which molecule corresponds to the IR spectrum (1) and which corresponds to the IR spectrum (2). Provide reasoning based on key functional group absorptions observed in the spectra.


cyclopentanol

2-hexanone



carboxylic acid

(Ashenhurst, 2016)

(1)

(Ashenhurst, 2016)

(2)

Functional Group	Wavenumber Range (cm ⁻¹)
O–H (Alcohol)	3200 - 3600
O–H (Carboxylic Acid)	2500 - 3300
C–H (Alkanes)	2800 - 3000
C–H (Alkenes)	3000 - 3100
C–H (Aromatic)	3000 - 3100
C=O (Ketone)	1650 - 1750
C=O (Aldehyde)	1700 - 1750
C=O (Carboxylic Acid)	1700 - 1725
C=O (Ester)	1735 - 1750
N–H (Amine/Amide)	3300 - 3500
C≡C (Alkyne)	2100 - 2260
C≡N (Nitrile)	2200 - 2260
C=C (Alkene)	1600 - 1680
C–O (Ester, Ether)	1000 - 1300
Aromatic Rings	1450 - 1600

Periodic Table of the Elements

1	H Hydrogen 1.008	2	He Helium 4.003
3	Li Lithium 6.941	4	Be Beryllium 9.012
11	Na Sodium 22.990	12	Mg Magnesium 24.305
19	K Potassium 39.098	20	Ca Calcium 40.078
37	Rb Rubidium 84.468	38	Sr Strontium 87.62
55	Cs Cesium 132.905	56	Ba Barium 137.327
87	Fr Francium 223.020	88	Ra Radium 226.025
13	B Boron 10.811	21	Sc Scandium 44.956
39	Y Yttrium 88.906	40	Ti Titanium 47.88
57	Hf Hafnium 178.49	58	Zr Zirconium 91.224
89	Rf Rutherfordium [261]	90	Ta Tantalum 180.948
143	Ra Actinides [Actinium 227.028]	144	W Tungsten 183.85
145	Fr Actinides [Actinium 227.028]	146	Db Dubnium [262]
147	Ra Actinides [Actinium 227.028]	148	Sg Seaborgium [266]
149	Ra Actinides [Actinium 227.028]	150	Bh Bohrium [264]
151	Ra Actinides [Actinium 227.028]	152	Ds Darmstadtium [269]
153	Ra Actinides [Actinium 227.028]	154	Rg Roentgenium [272]
155	Ra Actinides [Actinium 227.028]	156	Cn Copernicium [277]
157	Ra Actinides [Actinium 227.028]	158	Uut Ununtrium [289]
159	Ce Cerium 140.115	160	Pm Promethium 144.908
161	Pr Praseodymium 140.115	162	Sm Samarium 150.36
163	Eu Europium 151.966	164	Gd Gadolinium 157.25
165	Tb Terbium 158.925	166	Dy Dysprosium 162.50
167	Ho Holmium 164.930	168	Er Erbium 167.26
169	Tm Thulium 168.934	170	Yb Ytterbium 173.04
171	Lu Lutetium 174.967	172	Y Yttrium 18.998
173	La Lanthanum 138.906	174	O Oxygen 15.999
175	Ce Cerium 140.115	176	F Fluorine 18.998
177	Pr Praseodymium 144.908	178	Ne Neon 20.180
179	Nd Neodymium 144.24	180	N Nitrogen 14.007
181	P Phosphorus 30.974	182	S Sulfur 32.066
183	Si Silicon 28.086	184	Cl Chlorine 35.453
185	Al Aluminum 26.982	186	Ar Argon 39.948
187	Ge Germanium 65.39	188	Kr Krypton 84.80
189	Zn Zinc 65.39	190	Br Bromine 79.904
191	Cu Copper 63.546	192	Se Selenium 78.09
193	Ni Nickel 58.693	194	As Arsenic 74.922
195	Co Cobalt 58.933	196	Ge Germanium 69.732
197	Fe Iron 55.933	198	Ge Germanium 72.61
199	Mn Manganese 54.938	200	Ge Germanium 72.61
201	Cr Chromium 51.996	202	Ge Germanium 72.61
203	V Vanadium 50.942	204	Ge Germanium 72.61
205	Ti Titanium 47.88	206	Ge Germanium 72.61
207	Sc Scandium 44.956	208	Ge Germanium 72.61
209	Ca Calcium 40.078	210	Ge Germanium 72.61
211	Na Sodium 22.990	212	Ge Germanium 72.61
213	K Potassium 39.098	214	Ge Germanium 72.61
215	Rb Rubidium 84.468	216	Ge Germanium 72.61
217	Sr Strontium 87.62	218	Ge Germanium 72.61
219	Cs Cesium 132.905	220	Ge Germanium 72.61
221	Ba Barium 137.327	222	Ge Germanium 72.61
223	Fr Francium 223.020	224	Ge Germanium 72.61
225	Ra Radium 226.025	226	Ge Germanium 72.61
227	Fr Francium 223.020	228	Ge Germanium 72.61

57	La Lanthanum 138.906	58	Ce Cerium 140.115	59	Pr Praseodymium 140.908	60	Nd Neodymium 144.913	61	Pm Promethium 144.24	62	Sm Samarium 150.36	63	Eu Europium 151.966	64	Gd Gadolinium 157.25	65	Tb Terbium 158.925	66	Dy Dysprosium 162.50	67	Ho Holmium 164.930	68	Er Erbium 167.26	69	Tm Thulium 168.934	70	Yb Ytterbium 173.04	71	Lu Lutetium 174.967
89	Ac Actinium 227.028	90	Th Thorium 232.038	91	Pa Protactinium 231.036	92	U Uranium 238.029	93	Np Neptunium 237.048	94	Pu Plutonium 244.064	95	Am Americium 243.061	96	Cm Curium 247.070	97	Bk Berkelium 247.070	98	Cf Californium 251.080	99	Es Einsteinium 257.095	100	Fm Fermium 251.080	101	Md Mendelevium 258.1	102	No Nobelium 259.101	103	Lr Lawrencium 262.028

Reference:

McMurry, John E., Fay Robert C., and Robinson Jill K. (2016) "Chemistry, 7th Edition", USA, Pearson Education, Inc.

Heaton, A. (1996) (Ed.) An Introduction to Industrial Chemistry. New York: Blackie Academic and Professional.

Ashenhurst, J. (2016) 'Interpreting IR Spectra: A Quick Guide', *Master Organic Chemistry*, 23 November. Available at:

https://www.masterorganicchemistry.com/2016/11/23/quick_analysis_of_ir_spectra/
(Accessed: 19 December 2024).

trinset (2024) 'Scientific experiment diagram showing the concept of serial dilution for decreasing the concentration of a sample solution', *Adobe Stock*. Available at:

<https://stock.adobe.com/es/images/scientific-experiment-diagram-show-concept-of-serial-dilution-for-decrease-concentration-of-sample-solution/376087059> (Accessed: 20 December 2024).

Periodic table of Elements, (2021) *Printable*, Retrieved online on 24th April 2022, from:
https://www.printablee.com/post_periodic-table-of-elements-printable_400652/

MLO and Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	1,3	Analyzing, Evaluating	6	
2	1,2,3	Understanding/Application/Analyzing	20	
3	2	Application	6	
4	1,3	Application/Analyzing	4	
5	3	Analyzing	4	