

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
PE	1	2	MAIN
MODULE NAME:	COMPUTER APPLICATIONS		
MODULE CODE:	TCOMP	EXAM DATE:	
INSTRUCTOR's NAME:	Amer Alhabsi	DURATION:	2.5 hrs.

Questions to be answered on: Space provided on the question paper. The practical questions to be uploaded to Moodle.	Allowed tools: Pen, Pencil & Lab PC (no personal laptops)	Number of pages (Incl. cover page): 5
--	--	---

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS	
STUDENT NAME:	40
STUDENT ID:	10

Number of answer scripts:.....

Invigilator:.....

Student's signature:

Time of receipt:.....

For all questions requiring Python programming, use Jupyter Notebook. **Use ONE notebook for all questions.**
Separate the questions with a heading that shows the question number.

Q1: [10 marks]

The pressure, P, of a gas, and its volume, V, are related by

$$PV^{1.2} = 2000 \log\left(\frac{1003}{101}\right)$$

- (a) (2 marks) Write P as a function of V.
- (b) (5 marks) Write a Python function that accepts one input for representing the volume, V. The function calculates and returns the pressure.
- (c) (3 marks) Test the function by calling it with V=25, 30, 35 and 40. Print the result.

Q2: [10 marks]

Create a new MS Word document. Apply the following.

- (a) (1 mark) Create a title: Acid-Base Titration.
- (b) (2 marks) Create a document structure consisting of:
 - Introduction (heading 1)
 - History (heading 2)
 - Background (heading 2)
 - Procedure (heading 1)
 - Experiments (heading 2)
 - Results (heading 1)
 - Discussion of Results (heading 1)
 - Conclusion (heading 1)
- (c) (2 marks) Apply the following styles:
 - a. Title: Font Arial, font size: 36, left aligned, font color: dark blue.
 - b. Heading 1: Font Arial, font size: 18, left aligned, font color: dark green.
 - c. Font Calibri, font size: 14, bold, left aligned, font color: red.
- (d) (1 mark) Add dummy text in each section. Use the function =lorem(10) followed by pressing enter. Create 10-20 paragraphs for each section.
- (e) (2 marks) Add a table of contents at the top of the page.
- (f) (2 marks) Insert the equation below after first paragraph in Introduction.

$$\frac{dy}{dx} = 7x^3 + \sin(2\theta) + \sqrt{x + \pi}$$

Q3:

[10 marks]

Let x represents time in seconds and $f(x)$ represents the volume of a spring displacement in (cm).

Write a Python program to plot

$f(x) = \cos(10x) \exp(-0.3x)$ in the range $0 \leq x \leq 4\pi$. Display in the plot **all necessary labels**.

Show a grid. Add your name as the title. *Ensure the plot looks smooth.*

Q4:

[10 marks]

Analyze the following program. Trace it and show what the program will output when executed.

Trace with a paper and pen. DO NOT use a computer for this part.

```
def test(a, b):  
    if a%2 == 0:  
        z = 4*a + b  
    else:  
        z = b**2 + a  
    return z  
  
x = 3  
y = 2  
print("welcome")  
f = test(x, y)  
print("f = ", f)  
  
y = 1  
f = test(x+3, y)  
print("f = ", f)
```

No questions beyond this point.

The following are commonly used statements you may or may not find them useful in your exam.

```
import math
import numpy as np
import matplotlib.pyplot as plt
```

Common Numpy functions:

```
np.sin()
np.cos()
np.tan()
np.sqrt()
np.log()
np.log10()
np.exp()
np.pi
```

Common Matplotlib.pyplot functions

```
plt.plot()
plt.linspace()
plt.grid()
plt.savefig()
plt.title()
plt.xlabel()
plt.ylabel()
```

Common Math functions:

```
math.sin()
math.cos()
math.tan()
math.sqrt()
math.log()
math.log10()
math.exp()
math.pi
```

MLO & Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	3, 4	Creating	10	
2	1, 2, 5	Applying	10	
3	4, 5	Applying, Analysing	10	
4	4	Analysing	10	