

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
PE	2	1	MAIN
MODULE NAME:	ELECTRICAL MACHINES AND DRIVES		
MODULE CODE:	TEMD	EXAM DATE:	27-12-2023
INSTRUCTOR's NAME:	Ranjit V	DURATION:	2 hrs

Questions to be answered on: <input type="checkbox"/> ü Space provided on the question paper	Allowed tools: Pen, Pencil & Calculator	Number of pages (Incl. cover page): 14
--	---	---

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS	
STUDENT NAME:	40
STUDENT ID:	10

Number of answer scripts:.....

Invigilator:.....

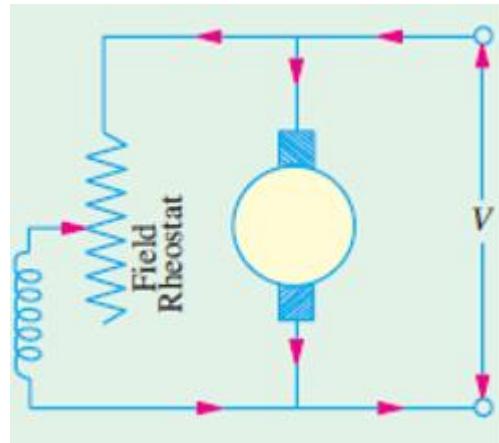
Student's signature:

Time of receipt:.....

INSTRUCTIONS

- Express the **CORRECT SI units** for all the dimensional quantities or **½ MARK** will be deducted from each answer

SECTION A


There are overall **8** questions in Section A. Answer all the questions in the space provided.

Each question carries two marks.

[**8 × 2 = 16** marks]

1. Differentiate between the shell and core construction of a transformer. Give any 2 points.

2. The below figures show one of the methods of controlling the speed of a DC motor.

(Daware, 2014)

Identify this method by which the speed of the motor can be controlled. Give one characteristic feature of this connection.

7. One-fourth of the conservator drum is usually kept empty. Can you provide a suitable supporting reason for this statement?

8. Explain the fundamental principle of a single-phase transformer.

SECTION B

There are overall 4 questions in Section B. Answer any three questions in the space provided.

Each question carries 8 marks.

[$8 \times 3 = 24$ marks]

9. a) Differentiate between the Y and Δ connection in the winding of a three-phase transformer. Give any two points. (2 marks)

b) A single-phase transformer is rated at 100 kVA. The transformer has full-load copper losses of 650 W and iron losses of 500 W.

Determine the transformer efficiency at half-full load and 0.92 power factor. (4 marks)

c) Calculate the no-load voltage of the transformer having a regulation of 4.5 % at a full load voltage of 225V. **(2 marks)**

10. a) Compare the DC shunt and DC series motor based on construction and operation with a suitable circuit diagram. **(4 marks)**

b) Draw the block diagram for the variable frequency drive(VFD) speed control method for AC motors. Explain the main parts and describe their functions in detail. **(4 marks)**

11. a) Describe the various losses that reduce the efficiency of the transformer. Suggest suitable methods for reducing these losses. **(2 marks)**

b) A 1.1kV/440 V, Y - Δ connected three-phase transformer delivers 500 kVA on full load. Calculate

- i) The turns ratio **(2 marks)**
- ii) The secondary full-load line current (I_L) and Phase current (I_{ph}). **(2 marks)**
- iii) The primary full-load line current (I_L) and Phase current (I_{ph}). **(2 marks)**

12. a) Describe the construction and principle of a three-phase transformer with the help of a neat and labelled diagram. **(4 marks)**

b) Discuss any 4 factors that affect the efficiency of the transformer. Also, suggest the causes and preventive methods to improve the efficiency of the transformer. **(4 marks)**

Formula Sheet

$$1. \text{ Synchronous Speed } N_s = \frac{120f}{P}$$

$$2. \% \text{ Slip} = \frac{N_s - N_r}{N_s} \times 100$$

$$3. N_r = N_s (1 - s)$$

$$4. f_r = s \times f$$

$$5. P = \sqrt{3} \times V \times I \times \cos \phi$$

$$6. P = V \times I \times \cos \phi$$

$$7. E_p = 4.44 f \phi_m N_p$$

$$8. E_s = 4.44 f \phi_m N_s$$

$$9. \phi_m = B_m \times \text{Area}$$

$$10. V_L = \sqrt{3} V_{ph}, I_L = I_{ph}$$

$$11. V_L = V_{ph}, I_L = \sqrt{3} I_{ph}$$

$$12. \text{ Transformer Efficiency } (\eta) = \frac{\text{Output Power}}{\text{Input Power}} \times 100$$

$$\text{Transformer Efficiency } (\eta) = \frac{\text{Input Power} - \text{losses}}{\text{Input Power}} \times 100$$

$$\eta = \frac{\text{Output Power}}{\text{Output Power} + \text{Losses}} \times 100$$

13. The efficiency at any load is given by

$$\eta = \frac{(x \times \text{full load kVA} \times \text{power factor})}{(x \times \text{full load kVA} \times \text{power factor}) + (W_i + x^2 W_{Cu})} \times 100$$

$$14. \text{ Total losses} = (W_i + x^2 W_{Cu})$$

$$15. W_{Cu} = I_L^2 R$$

$$16. \% \text{ Regulation} = \left(\frac{\text{No load secondary voltage} - \text{Secondary voltage}}{\text{No load secondary voltage}} \right) \times 100$$

$$\% \text{ Regulation} = \left(\frac{E_2 - V_2}{E_2} \right) \times 100$$

$$17. \text{ Armature Back Emf } E_b = N \phi$$

$$18. \text{ Back Emf } E_b = V - I_a R_a$$

$$19. \text{ Torque } T = \phi I_a \text{ Newton-Metre}$$

$$20. \frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}} \times \frac{\phi_1}{\phi_2}$$