

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
PE	2	2	Main
MODULE NAME:	Industrial Chemistry		
MODULE CODE:	TICHEM	EXAM DATE:	20/05/2024
INSTRUCTOR's NAME:	Dr. Muna Al-Hinai	DURATION:	2.5 hrs.

Questions to be answered on: <input checked="" type="checkbox"/> Space provided on the question paper	Allowed tools: Pen, Pencil & Calculator	Number of pages (Incl. cover page): 10
---	---	---

Points of attention:

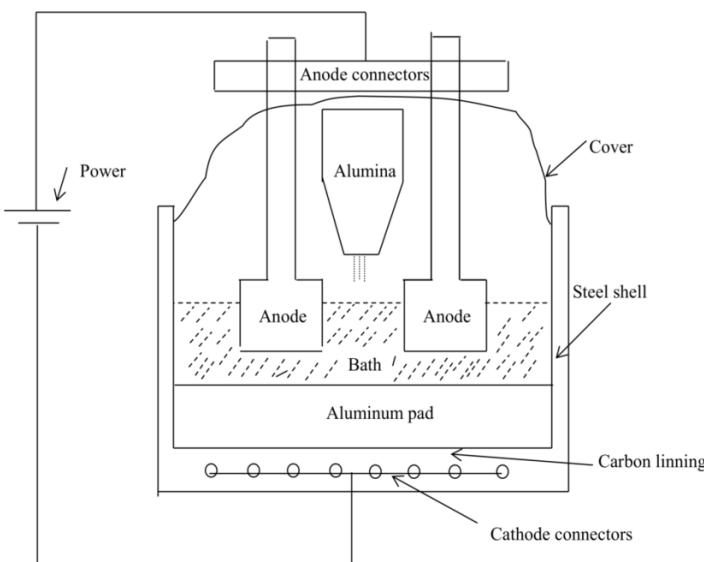
- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS

STUDENT NAME:		40
STUDENT ID:		10

Number of answer scripts:.....

Invigilator:.....


Student's signature:

Time of receipt:.....

Instructions: Answer all questions in exam paper.

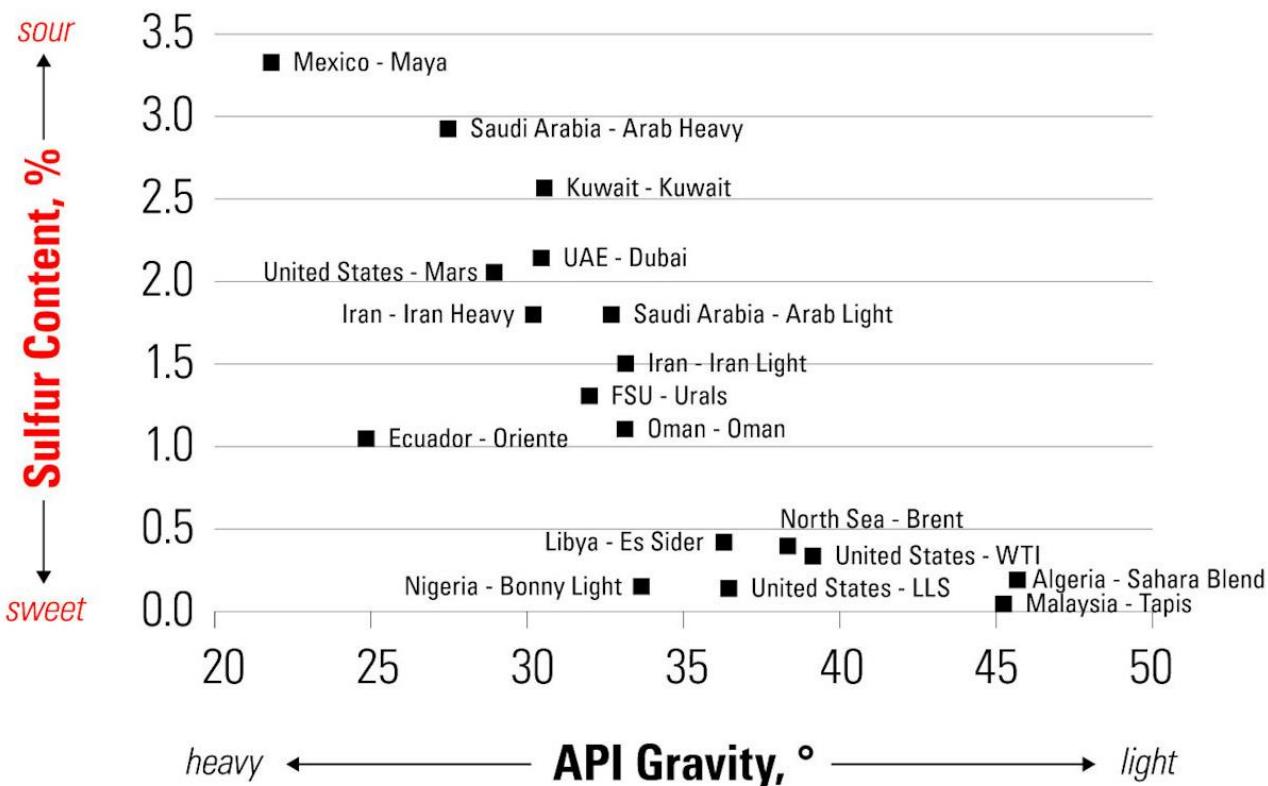
Question 1 (MLO 1, 2, 3, 4, Understand, apply, analyze, evaluate) (10 Marks)

Hall-Heroult Process is a major process for smelting aluminum. Alumina (aluminum oxide, Al_2O_3) is extracted from aluminum ores mainly bauxite and dissolved at ~ 950 $^{\circ}\text{C}$ in molten cryolite (sodium hexafluoroaluminate Na_3AlF_6). Elemental aluminum is produced by electrolysis of the molten cryolite by passing voltage of 5 V at 100- 300 kA. Analyze the Hall-Heroult process diagram below to answer the questions.

(Obaidate, 2018)

a. State the balanced reaction at the cathode. **(2 Marks)**

b. State the balanced reaction at the anode. **(2 Marks)**


c. Write the overall reaction and determine the cell potential. **(3 Marks)**

d. The electrolyte in Hall- Heroult process is Na_3AlF_6 and AlF_3 is added as additive. Explain the purpose of adding fluorinated salts to the process. **(1 Mark)**

e. CO_2 and HF are produced during the operation of Hall- Heroult process. Explain how aluminum manufacturers can reduce the environmental pollution from the process. **(2 Marks)**

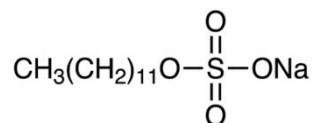
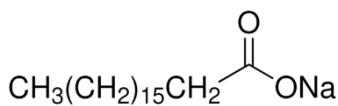
Question 2 (MLO 2, 3, 4, apply, analyze, evaluate) (14 Marks)

American petroleum institute gravity (API gravity) and sulfur content are two scale for petroleum qualification. The chart below compares the API gravity and sulfur content of different types of oil. Analyze the chart and answer the following questions.

Source: U.S. Energy Information Administration, based on Energy Intelligence Group—International Crude Oil Market Handbook.

United States-Mars is an offshore drilling site in the Gulf of Mexico. WTI = West Texas Intermediate; LLS = Louisiana Light Sweet; FSU = Former Soviet Union; UAE = United Arab Emirates.

(Andrews, 2023)



a. Determine the specific gravity of Saudi Arabia- Arab Heavy oil and Saudi Arabia- Arab Light oil and which is lighter? **(4 Marks)**

b. Compare the quality of these oils: Saudi Arabia- Arab Heavy, Ecuador- Oriente, UAE- Dubai, Oman- Oman, and North Sea- Brent and justify your answer from sulfur content and API gravity value. **(6 Marks)**

c. Arrange the expected price of oils in part b from the lowest price to the highest and justify your answer. **(4 Marks)**

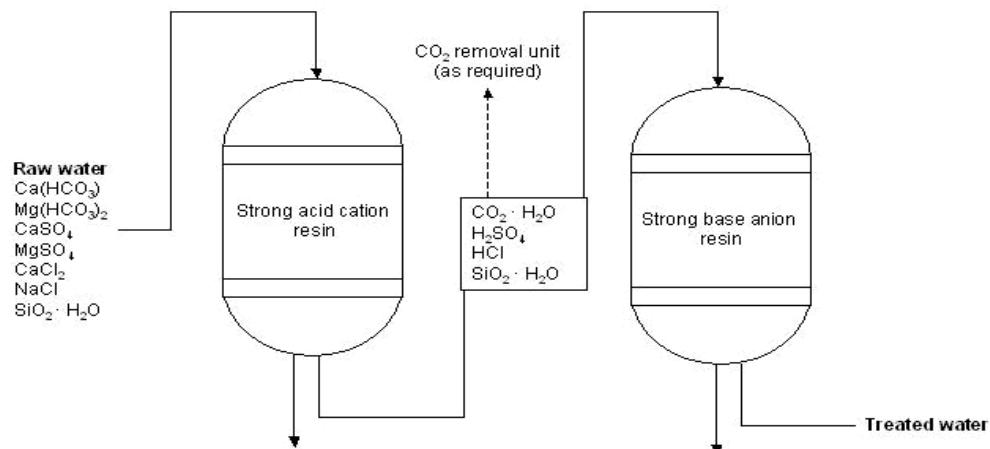
Question 3 (MLO 1, 3, 4, Understand, analyze, evaluate) (8 Marks)

Soap and detergent are substances that are used in cleansing agents. When soap and detergents dissolved in water, possess the ability to remove dirt from surfaces such as the human skin, textiles, and other solids. The cleansing action of both soaps and detergents results from their ability to lower the surface tension of water, to emulsify oil or grease and to hold them in a suspension in water. Structures below illustrate two substances that are used in cleansing agents. Analyze the two structures and answer the following questions.

Sodium stearate (Merck, 2024)

Sodium dodecyl sulfate (TIC, 2024)

a. Complete the table below to compare the two structures. **(4 Marks)**


	Sodium stearate	Sodium dodecyl sulfate
Classification (Soap or detergent)		
Fat source		
Head functional group		
Leathering in hard water		

b. Explain this statement: “soaps and detergents are surface active agents”. **(2 Marks)**

c. Predict the chemical reaction for the production of sodium stearate. **(2 Marks)**

Question 4 (MLO 3, 4, analyze, evaluate) (8 Marks)

Deionization is the removal of electrically charged substance from water. Deionization is achieved in different methods including ion exchange resins and fixed bed deionization. The diagram below shows deionization process, and the table illustrates some resins that are used in the exchangers. Analyze the diagram and the table to answer the questions.

(Lenntech, 2024)

A	$\text{R}-\text{CH}-(\text{NH}_2)-\text{CH}_3$
B	$\text{R}-\text{C}=(\text{NH})-\text{CH}_3$
C	$\text{R}-\text{PO}_3\text{H}_2$
D	$\text{R}-\text{CH}_2-\text{OH}$

- State the **three** type of ions that are removed in cationic exchangers. **(1.5 Marks)**
- State **two resins** from the table that are used in cationic exchangers. **(1 Mark)**
- State the **three** type of ions that are removed in anionic exchangers. **(1.5 Marks)**
- State **two resins** from the table that are used in anionic exchangers. **(1 Marks)**

e. Compare the hardness removal action in ion- exchangers and fixed- bed deionizers. (3 Marks)

References

Andrews, K., (2023), Types of Crude Oil: Heavy vs Light, Sweet vs Sour, and TAN count, KIMRAY, Retrieved online on 14th April 2024 from: <https://kimray.com/training/types-crude-oil-heavy-vs-light-sweet-vs-sour-and-tan-count>

Obaidat, M., Al-Ghandoor, A., Phelan, P., Villalobos, J., & Alkhalidi, A. (2018). Energy and exergy analyses of different aluminum reduction technologies. *Sustainability (Switzerland)*, Vol. 0(4), Article 1216. <https://doi.org/10.3390/su10041216>

Periodic table of Elements, (2021) *Printable*, Retrieved online on 24th April 2022, from: https://www.printablee.com/post_periodic-table-of-elements-printable_400652/

Standard Reduction Potential, (2013), Retrieved online on 24th April 2022, from: <https://ch302.cm.utexas.edu/echem/echem-cells/selector.php?name=std-red-potentials>

Sodium dodecyl sulfate, (2024), TCI, Retrieved online on 30th April 2024 from: <https://www.tcichemicals.com/IN/en/p/S0588>

Sodium stearate, (2024), Merck, Retrieved online on 30th April 2024 from: <https://www.sigmadralich.cn/CN/en/product/sigma/s3381>

Deionized/ Demineralized Water, (2024), Lenntech, Retrieved online on 30th April 2024 from: <https://www.lenntech.com/applications/process/demineralised/deionised-demineralised-water.htm>

Periodic Table of the Elements

1	H Hydrogen 1.008	2	He Helium 4.003	3	Li Lithium 6.941	4	Be Beryllium 9.012	5	B Boron 10.811	6	C Carbon 12.011	7	N Nitrogen 14.007	8	O Oxygen 15.999	9	F Fluorine 18.998	10	Ne Neon 20.180																																
11	Na Sodium 22.990	12	Mg Magnesium 24.305	13	Al Aluminum 26.982	14	Si Silicon 28.086	15	P Phosphorus 30.974	16	S Sulfur 32.066	17	Cl Chlorine 35.453	18	Ar Argon 39.948	19	K Potassium 39.098	20	Ca Calcium 40.078	21	Sc Scandium 44.956	22	Ti Titanium 50.942	23	V Vanadium 51.988	24	Cr Chromium 51.996	25	Mn Manganese 54.938	26	Fe Iron 55.933	27	Co Cobalt 58.933	28	Ni Nickel 58.693	29	Cu Copper 63.546	30	Zn Zinc 65.39	31	Ga Gallium 69.732	32	Ge Germanium 72.61	33	As Arsenic 74.922	34	Se Selenium 78.09	35	Br Bromine 79.904	36	Kr Krypton 84.880
37	Rb Rubidium 84.468	38	Sr Strontium 87.62	39	Y Yttrium 88.906	40	Zr Zirconium 91.224	41	Nb Niobium 92.906	42	Mo Molybdenum 95.94	43	Tc Technetium 98.907	44	Ru Ruthenium 101.07	45	Rh Rhodium 102.906	46	Pd Palladium 106.42	47	Ag Silver 107.868	48	Cd Cadmium 112.411	49	In Indium 114.818	50	Sn Tin 118.71	51	Sb Antimony 121.760	52	Te Tellurium 127.6	53	I Iodine 126.904	54	Xe Xenon 131.29																
55	Cs Cesium 132.905	56	Ba Barium 137.327	57-71	Hf Hafnium 178.49	72	Ta Tantalum 180.948	73	W Tungsten 183.85	74	Re Rhenium 186.207	75	Os Osmium 190.23	76	Ir Iridium 192.22	77	Pt Platinum 195.08	78	Au Gold 196.967	79	Hg Mercury 200.59	80	Pb Lead 204.383	81	Tl Thallium 207.2	82	Bi Bismuth 208.980	83	Po Polonium 208.982	84	At Astatine 209.987	85	Rn Radon 222.018																		
87	Fr Francium 223.020	88	Ra Radium 226.025	89-103	Rf Actinides [261]	104	Db Rutherfordium [262]	105	Sg Seaborgium [266]	106	Bh Bohrium [264]	107	Hs Hassium [269]	108	Mt Meitnerium [268]	109	Ds Darmstadtium [269]	110	Rg Roentgenium [272]	111	Cn Copernicium [277]	112	Uut Ununtrium [277]	113	Uup Ununpentium [289]	114	Fl Flerovium [289]	115	Lv Livermorium [298]	116	Uus Ununseptium [298]	117	Uuo Ununoctium [298]	118	Uuu Unknown [298]																
57	La Lanthanum 138.906	58	Ce Cerium 140.115	59	Pr Praseodymium 144.908	60	Nd Neodymium 144.24	61	Pm Promethium 144.913	62	Sm Samarium 150.36	63	Eu Europium 151.966	64	Gd Gadolinium 157.25	65	Tb Terbium 158.925	66	Dy Dysprosium 162.50	67	Ho Holmium 164.930	68	Er Erbium 168.934	69	Tm Thulium 168.934	70	Yb Ytterbium 173.04	71	Lu Lutetium 174.967																						
89	Ac Actinium 227.028	90	Th Thorium 232.038	91	Pa Protactinium 231.036	92	U Uranium 238.029	93	Np Neptunium 237.048	94	Pu Plutonium 244.064	95	Am Americium 243.061	96	Cm Curium 247.070	97	Bk Berkelium 247.070	98	Cf Californium 251.080	99	Es Einsteinium 254.070	100	Fm Fermium 257.095	101	Md Mendelevium 258.1	102	No Nobelium 259.101	103	Lr Lawrencium 262.022																						

Standard Potentials at 25°C

Half Reaction	Potential	Half Reaction	Potential
$\text{F}_2 + 2\text{e}^- \rightarrow 2\text{F}^-$	+2.87 V	$2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2$	0.000 V
$\text{O}_3 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{O}_2 + \text{H}_2\text{O}$	+2.07 V	$\text{Fe}^{3+} + 3\text{e}^- \rightarrow \text{Fe}$	-0.04 V
$\text{S}_2\text{O}_8^{2-} + 2\text{e}^- \rightarrow 2\text{SO}_4^{2-}$	+2.05 V	$\text{Pb}^{2+} + 2\text{e}^- \rightarrow \text{Pb}$	-0.13 V
$\text{PbO}_2 + 4\text{H}^+ + \text{SO}_4^{2-} + 2\text{e}^- \rightarrow \text{PbSO}_4 + 2\text{H}_2\text{O}$	+1.69 V	$\text{Sn}^{2+} + 2\text{e}^- \rightarrow \text{Sn}$	-0.14 V
$\text{Au}^+ + \text{e}^- \rightarrow \text{Au}$	+1.69 V	$\text{Ni}^{2+} + 2\text{e}^- \rightarrow \text{Ni}$	-0.23 V
$\text{Pb}^{4+} + 2\text{e}^- \rightarrow \text{Pb}^{2+}$	+1.67 V	$\text{V}^{3+} + \text{e}^- \rightarrow \text{V}^{2+}$	-0.26 V
$2\text{HClO} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Cl}_2 + 2\text{H}_2\text{O}$	+1.63 V	$\text{Co}^{2+} + 2\text{e}^- \rightarrow \text{Co}$	-0.28 V
$\text{Ce}^{4+} + \text{e}^- \rightarrow \text{Ce}^{3+}$	+1.61 V	$\text{In}^{3+} + 3\text{e}^- \rightarrow \text{In}$	-0.34 V
$\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}$	+1.51 V	$\text{PbSO}_4 + 2\text{e}^- \rightarrow \text{Pb} + \text{SO}_4^{2-}$	-0.36 V
$\text{Au}^{3+} + 3\text{e}^- \rightarrow \text{Au}$	+1.40 V	$\text{Cd}^{2+} + 2\text{e}^- \rightarrow \text{Cd}$	-0.40 V
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-$	+1.36 V	$\text{Cr}^{3+} + \text{e}^- \rightarrow \text{Cr}^{2+}$	-0.41 V
$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$	+1.33 V	$\text{Fe}^{2+} + 2\text{e}^- \rightarrow \text{Fe}$	-0.44 V
$\text{O}_2 + 4\text{H}^+ + 4\text{e}^- \rightarrow 2\text{H}_2\text{O}$	+1.23 V	$\text{Zn}^{2+} + 2\text{e}^- \rightarrow \text{Zn}$	-0.76 V
$\text{MnO}_2 + 4\text{H}^+ + 2\text{e}^- \rightarrow \text{Mn}^{2+} + 2\text{H}_2\text{O}$	+1.21 V	$2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + 2\text{OH}^-$	-0.83 V
$\text{Pt}^{2+} + 2\text{e}^- \rightarrow \text{Pt}$	+1.20 V	$\text{Cr}^{2+} + 2\text{e}^- \rightarrow \text{Cr}$	-0.91 V
$\text{Br}_2 + 2\text{e}^- \rightarrow 2\text{Br}^-$	+1.09 V	$\text{Mn}^{2+} + 2\text{e}^- \rightarrow \text{Mn}$	-1.18 V
$2\text{Hg}^{2+} + 2\text{e}^- \rightarrow \text{Hg}_2^{2+}$	+0.92 V	$\text{V}^{2+} + 2\text{e}^- \rightarrow \text{V}$	-1.19 V
$\text{ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}^- + 2\text{OH}^-$	+0.89 V	$\text{ZnS} + 2\text{e}^- \rightarrow \text{Zn} + \text{S}^{2-}$	-1.44 V
$\text{Ag}^+ + \text{e}^- \rightarrow \text{Ag}$	+0.80 V	$\text{Al}^{3+} + 3\text{e}^- \rightarrow \text{Al}$	-1.66 V
$\text{Hg}_2^{2+} + 2\text{e}^- \rightarrow 2\text{Hg}$	+0.79 V	$\text{Mg}^{2+} + 2\text{e}^- \rightarrow \text{Mg}$	-2.36 V
$\text{Fe}^{3+} + \text{e}^- \rightarrow \text{Fe}^{2+}$	+0.77 V	$\text{Na}^+ + \text{e}^- \rightarrow \text{Na}$	-2.71 V
$\text{MnO}_4^- + 2\text{H}_2\text{O} + 3\text{e}^- \rightarrow \text{MnO}_2 + 4\text{OH}^-$	+0.60 V	$\text{K}^+ + \text{e}^- \rightarrow \text{K}$	-2.92 V
$\text{I}_2 + 2\text{e}^- \rightarrow 2\text{I}^-$	+0.54 V	$\text{Li}^+ + \text{e}^- \rightarrow \text{Li}$	-3.05 V
$\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- \rightarrow 4\text{OH}^-$	+0.40 V		
$\text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu}$	+0.34 V		
$\text{Hg}_2\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Hg} + 2\text{Cl}^-$	+0.27 V		
$\text{AgCl} + \text{e}^- \rightarrow \text{Ag} + \text{Cl}^-$	+0.22 V		
$\text{NO}_3^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{NO}_2^- + 2\text{OH}^-$	+0.01 V		
$2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2$	0.000 V		

Note: all ions are aqueous (aq), many neutral species are solids (s), although some are liquids (l), gases (g), and even aqueous (aq). Use other sources for details on state. They were purposely left off here to save space and keep a cleaner looking table.