

Final Exam
TMATH-I: TECHNICAL MATH 1
Fall 2024

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration:

2.5 hours

Instructor's Name:

Dr. Rokhsaneh Yousef Zehi

Exam Date:

05/01/2025

Program:

PE

	40
	10

Student Information

Name:

ID:

Signature:

Invigilator

Initials:

Student ID checked

Time received:

Question 1**[8 marks]**

Answer the following question:

a. Evaluate the following integral: (4 marks)

$$\int \frac{4x - 1}{x^2 + x - 2} dx$$

b. Given that $y \cos x + x \sin y = xy$. Find $\frac{dy}{dx}$. (4 marks)

Question 2**[4 marks]**

Water is dripping out of a cylindrical tank at a rate of $0.3 \text{ m}^3/\text{s}$. Determine the rate of change of the water level (h) per minute, considering the radius of tank to be 6 m .

Question 3**[5 marks]**

The heat transfer rate in a heating system at a distance x from the heat source is given by

$$f(x) = \sqrt{25 - x^2}.$$

The total heat transferred through the system from $x = 0$ to $x = 5$ can be calculated by

$$Q = \int_0^5 f(x) dx$$

Approximate the total heat transferred using **trapezium rule** with $n = 5$. Write your answer correct to 3 decimal places.

Question 4**[5 marks]**

The Temperature T (in $^{\circ}\text{C}$) of a rotating machine part that has been in operation for t hours is given by:

$$T = \frac{150(t + 2)}{(t + 3)^2}$$

Determine the rate of change of Temperature when $t = 6$ hours.

Question 5**[5 marks]**

Determine the volume of solid formed by revolving the curve $y = \cos x$ about the x -axis from $x = 0$ to $x = \frac{\pi}{2}$.

Question 6**[5 marks]**

An object is travelling along a straight line and its velocity at time t (in hours) is given by $v(t) = te^{-t}$ meters per hour. The distance $d(t)$ traveled by the object at any time t is related to the velocity by:

$$d(t) = \int v \, dt$$

- a. Determine the distance the object has travelled from $t = 1$ hour to $t = 4$ hours. (4 marks)
- b. Determine the average velocity of the object over this time interval. (1 mark)

Question 7**[8 marks]**

The rate of decrease of temperature (T °C) of an object with time (t minutes) satisfies the differential equation $\frac{dT}{dt} = -k(T - 21)$, where k is a positive constant.

- a. Determine the general solution for T . (4 marks)
- b. Given that the initial temperature of the object is 90°C and it cools to 80°C in 5 minutes, find a particular solution for T . (3 marks)
- c. Use the solution found in part b, to determine the temperature of the object after 15 minutes. (1 mark)

Formula sheet

Volume of Cylinder with radius r is given by: $\pi r^2 h$

Trapezium rule: $\int_a^b f(x) dx \approx \frac{h}{2} [y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n]$

This page is for rough work.

MLO and Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	1	Application	8	
2	1, 2	Analysis	4	
3	1	Undertesting, Application	5	
4	2,3	Application	5	
5	1,4	Application	5	
6	4	Application, Analysis	5	
7	3,6,5	Analysis	8	

References:

1. Anthony Croft, R. D., 2015. Mathematics for Engineers. Fourth ed. Harlow: Pearson.
2. J. Washington, A., 2014. Basic Technical Mathematics with Calculus. 10 ed. Harlow: Pearson Education Limited.
3. CGP Books (2017) Mathematics for A-level. Cumbria: Coordination Group Publications.