

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
PE	2023	1	MAIN
MODULE NAME:	Technical Math I		
MODULE CODE:	TMATH-1	EXAM DATE:	24.12.2023
INSTRUCTOR's NAME:	Dr. Amer Alhabsi	DURATION:	2.5 hrs.

Questions to be answered on: <input checked="" type="checkbox"/> Space provided on the question paper	Allowed tools: Pen, Pencil & Calculator	Number of pages (Incl. cover page): 9
---	---	--

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS	
STUDENT NAME:	50
STUDENT ID:	

Number of answer scripts:.....

Invigilator:.....

Student's signature:

Time of receipt:.....

[15 pts]

1. Answer the following:

(a) Calculate $\lim_{x \rightarrow 2} \frac{x^3 - 2x^2 + x - 2}{x^2 + 4x - 12}$

(b) given that,

$$x^2y^5 + xy = 8,$$

find $\frac{dy}{dx}$

(c) Find the equation of the tangent to the curve $y = x^3 - 2x + 1$ at $x = 2$.

[10 pts]

2. Air is pumped into a spherical balloon at a rate of $2 \text{ cm}^3/\text{s}$.

- (a) What is the rate of change of the radius when the radius is 20 cm
- (b) What is the rate of change of the surface area at the same moment as that of part (a).

[8 pts]

3. Calculate the area bounded by the x -axis and the curve

$$y = x^2 \ln x$$

from $x = 1$ to $x = 10$. Write your answer to three decimal places.

[7 pts]

4. The volume of gas V and its pressure P are related by

$$P = 1000V^{-1.5}.$$

The work, W , done when the gas expands from volumes v_1 to v_2 is

$$W = \int_{v_1}^{v_2} P dV$$

Calculate the work done when the gas expands from 10 to 20 units.

[10 pts]

5. Answer ONE of the following questions

1. Newton's law of cooling states that the temperature of an object $T(t)$ changes as per the differential equation

$$\frac{dT}{dt} = -k(T - A)$$

where k is a constant, A is the ambient temperature and t is the time in seconds. Let an object with temperature 373 K be placed in a room with temperature 293 K .

- (a) Solve the differential equation
- (b) what will be the temperature of the body after 200 seconds
- (c) what will be the temperature of the body after a very long time.

2. For the following differential equation:

$$x^3 \frac{dy}{dx} + x^2 y = x$$

- (a) determine the integrating factor $\mu(x)$.
- (b) solve the differential equation.
- (c) determine the constant of integration given the condition $y(1) = 3$.

Table of Integrals

$\int x^n dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1$	$\int \frac{1}{x} dx = \ln x + C$
$\int e^x dx = e^x + C$	$\int a^x dx = \frac{1}{\ln a} a^x + C$
$\int \sin x dx = -\cos x + C$	$\int \cos x dx = \sin x + C$
$\int \tan x dx = \ln \sec x + C$	$\int \sec^2 x dx = \tan x + C$
$\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + C$	

Q #	MLO Addressed	Complexity Level	Mark	Comments
1	1	3	15	
2	1, 2	4	10	
3	1, 4	3	8	
4	1, 3, 4	4	7	
5	1, 3, 4, 6	3	10	

Volume of a sphere with radius r is

$$V = \frac{4}{3}\pi r^3$$

Surface area of a sphere with radius r is

$$A = 4\pi r^2$$