

ACADEMIC YEAR 2023 - 2024

Program	Year	Semester	Paper
PE	1	1	Midterm
MODULE NAME:	Technical Math I		
MODULE CODE:	TMATH-I	EXAM DATE:	9 Nov 2023
INSTRUCTOR's NAME:	Dr. Amer Alhabsi		
DURATION:		2 hrs.	

Questions to be answered on: <input checked="" type="checkbox"/> Space provided on the question paper	Allowed tools: Pen, Pencil & Calculator	Number of pages (Incl. cover page): 7
---	---	--

Points of attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers in **blue or black pen only**.
- Use the **pencil** only for **diagrams & graphs**.
- Show all the calculation steps in the given space.
- When finished submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS	
STUDENT NAME:	
STUDENT ID:	

Number of answer scripts:.....

Invigilator:.....

Student's signature:

Time of receipt:.....

1. (5 points) For the function $f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ c & \text{if } x = 0, \end{cases}$

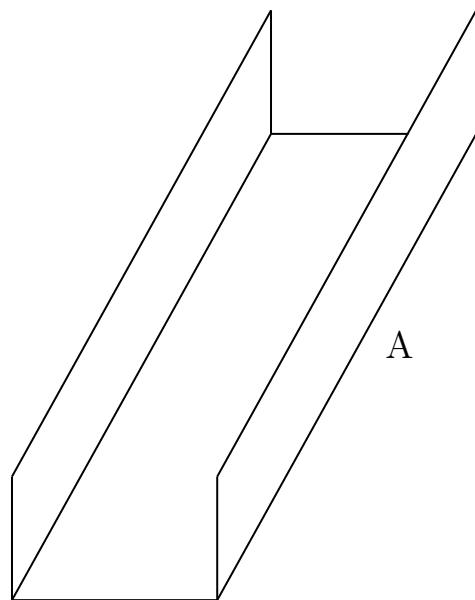
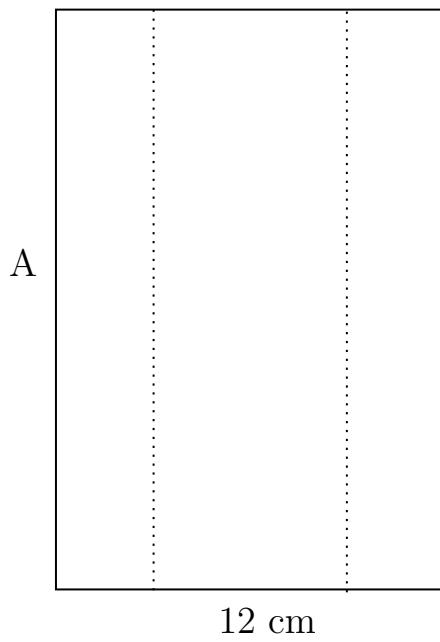
1. find the limit $\lim_{x \rightarrow 0} f(x)$.
2. find c such that the function is continuous at $x = 0$.

2. (15 points) Find $\frac{dy}{dx}$ for each of the following

$$1. x \sin y = e^{2x} + y^2$$

$$2. y = 3 \cos 2t \text{ and } x = \ln(t^2 + 1)$$

$$3. y = (e^{\sin x} + 1)^4$$



3. (10 points) In a rectangle, the width increases at a rate of 0.2 cm/s while its length decreases such that the area remains constant at 600 cm^2 . How fast is the length decreasing when the width is 12 cm ?

4. (5 points) Find the equation of the tangent of the curve $y = 1 + 2x - x^2$ when $x = 0$.

5. (5 points) Evaluate the integral

$$\int x(x^2 + 1)^8 \, dx$$

6. (10 points) We have a long metal sheet of width 12 cm and length A . It is desired to bend it at the dotted lines as shown in the figure. How should it be bent so as to maximize the volume.

Q #	MLO Addressed	Complexity Level	Mark	Comments
1	1	4	5	
2	1, 2	3	15	
3	2, 6	4	10	
4	1	4	5	
5	1	3	5	
6	2, 6	3	10	