

Final Exam
TMATH-II: TECHNICAL MATH II
Spring 2025

Points of attention:

- For each question, the maximum earned points are specified in the question.
- Write clearly! Answers that are not readable are not marked and don't earn marks!
- All answers should be written in English using **blue or black pens** only.
- Use the pencil only for diagrams and graphs.
- Show all the calculation steps in the given space.
- When finished, submit the question paper, together with the answer scripts and the signed cover page to the invigilator.
- Any cheating/copying may result in an instant failing of the examination.

Exam Duration:

2.5 hours

Instructor's Name:

Dr. Rokhsaneh Yousef Zehi

Exam Date:

18/06/2025

Program:

PE

	40
	10

Student Information

Name:

ID:

Signature:

Invigilator

Initials:

Student ID checked

Time received:

Question 1**[7 marks]**

A tank contains water contaminated with a chemical. A filter system removes the chemical continuously. The rate at which the concentration M (in mg/L) of the chemical decreases is modeled by the following differential equation:

$$\frac{dM}{dt} = -k(M - 5)$$

where k is a positive constant.

- a. Find the general solution for $M(t)$. (3 marks)
- b. If the initial concentration is **60 mg/L** and decreases to **30 mg/L** in **20 minutes**, determine k and find a particular solution for $M(t)$. (3 marks)
- c. Find the concentration after **60 minutes**. (1 mark)

Question 2**[8 marks]**

A mechanical system consists of a mass attached to a spring and a damping element. The displacement $x(t)$ of the mass from its equilibrium position is modeled by the following second-order differential equation:

$$\frac{d^2x}{dt^2} - 6\frac{dx}{dt} + 8x = 2t + 5e^{3t} - 1$$

Obtain the particular solution to this differential equation that satisfies the initial conditions $x(0) = 2, x'(0) = 3$.

Question 3**[6 marks]**

Determine the position and nature of the stationary point of the following function

$$f(x, y) = x^2 + y^3 - 2x - 3y + 3xy$$

Question 4**[6 marks]**

The temperature $T(x, y)$ of a fluid flowing through an insulated pipe is modeled by the function:

$$T = \frac{(2x - 3y)^2}{x^2 + e^{xy}}$$

Where x is the distance along the length of the pipe (in meters), and y is the radial distance from the center of the pipe (in meters).

- a. Find the partial derivatives $\partial T / \partial x$ and $\partial T / \partial y$. (5 marks)
- b. Evaluate both partial derivatives at the point $(x, y) = (1, 2)$. (1 mark)

Question 5**[7 marks]**

The currents i_1 , i_2 and i_3 of a circuit are related by

$$2i_1 + i_2 - i_3 = 8$$

$$i_1 - i_2 + i_3 = -5$$

$$3i_1 + 2i_2 = 9$$

Use Cramer's rule to evaluate the three currents.

Question 6**[6 marks]**

Determine the inverse of the following matrix.

$$A = \begin{pmatrix} -3 & -1 & 2 \\ 4 & 7 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$

MLO and Bloom's Level of Complexity

Q #	MLO Addressed	Complexity Level	Mark	Remark
1	3,4	Application, Analysis	7	
2	3,4	Application, Analysis	8	
3	1	Application	6	
4	2,3	Application, Analysis	6	
5	1,2	Application	7	
6	1	Application, Analysis	6	

References:

1. Anthony Croft, R. D., 2015. Mathematics for Engineers. Fourth ed. Harlow: Pearson.
2. J. Washington, A., 2014. Basic Technical Mathematics with Calculus. 10 ed. Harlow: Pearson Education Limited.
3. Stewart, J., 2008. *Calculus: Early Transcendentals*. 6th ed. Boston: Brooks/Cole.