

FINAL EXAM 2021 – 2022

Program	Year	Semester	Paper
PE	2	1	MAIN

MODULE NAME:	PROCESS INSTRUMENTATION		
--------------	-------------------------	--	--

MODULE CODE:	TPI	DATE:	11 /01/22
--------------	-----	-------	-----------

TEACHER'S NAME:	Dr. ALDRIN	DURATION:	... Hrs
-----------------	------------	-----------	---------

Questions to be answered on:	Allowed requirements	Number of pages
Space provided on the question paper	Pen, Pencil, Calculator, Personal Computer, Mobile Devices	(Incl. Cover Page): 11

Points of Attention:

- For each question, the maximum earned points are mentioned between brackets at the end of each question.
- Write very clearly! Answers that are not readable are not marked and don't get points!
- Make sure your answers are written to the point.
- All answers should be written **in English**.
- Write all the answers **in blue or black pen only (NO pencil)**.
- Answers can also be **typed in MS Word** using proper formatting instruction provided in the question paper.
- Answer written in **Pencil** will not be marked.
- Use **pencil or Computer graphics** only for **diagrams, graphs & drawing**.
- Show all the calculation steps in the given space.
- Any cheating/copying may result in an instant failing of the examination.

FINAL MARKS

STUDENT NAME:		40
STUDENT ID:		10

Number of answer scripts:

Teacher:

Student's signature:

Time of receipt:

SECTION A
ANSWER ALL THE SHORT QUESTIONS [5 x 2 = 10 marks]

1. Recommend a pressure gauge for measuring differential pressure of corrosive liquid state its principle.
2. Determine the volume & mass flow rate of orifice flow meter as per the data given below.

Process instrument	Orifice flow meter
<i>Pipe diameter</i>	18 cm
<i>Hole diameter</i>	9 cm
<i>Density of fluid</i>	1000 kg/m ³
<i>Flow coefficient</i>	0.6
<i>Upstream pressure</i>	32 Pa
<i>Downstream pressure</i>	14 Pa.

3. Determine the change in resistance of the strain gauge as per the data given below.

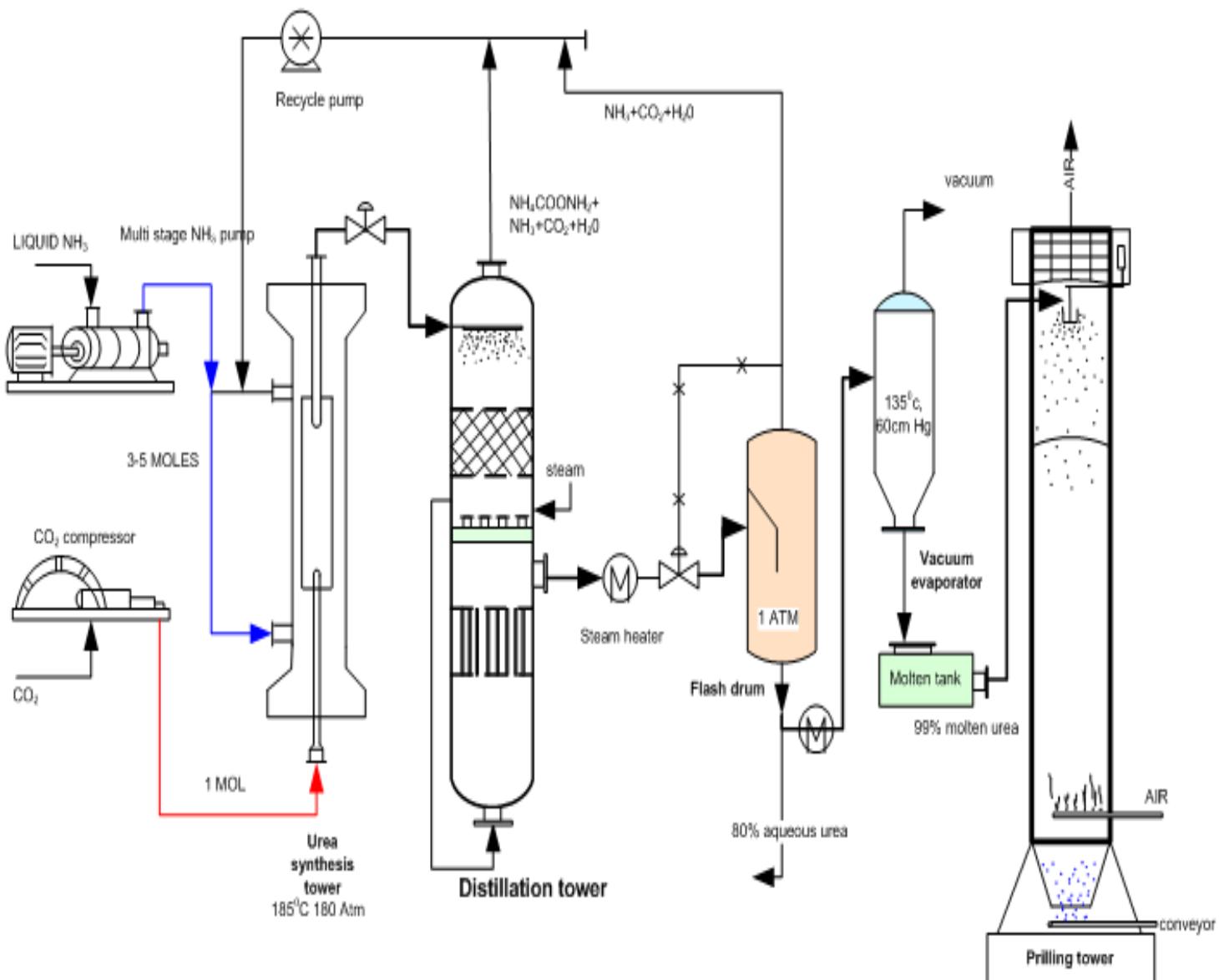
<i>Sensor name</i>	<i>Strain gauge</i>
<i>Resistance</i>	2K
<i>Diameter</i>	7 cm
<i>Gauge factor</i>	2
<i>Force</i>	20650 N
<i>Modulus of elasticity</i>	$6.89 \times 10^{10} \text{ N/m}^2$

4. Determine the expansion length of an aluminum rod of length 16 m at 25 °C expand when the temperature is changed from 0°C - 180 °C.? The thermal coefficient of expansion of aluminum is given as $25 \times 10^{-6}/^{\circ}\text{C}$.

5. Draw the sketch of Variable area flow meter and write its principle of measurement.

ANSWER ALL THE QUESTIONS $6 \times 5 = 30$ MARKS

1. An RTD has $\alpha_0 = 0.005^\circ /C$ and dissipation constant of $PD = 30 \text{ mw}$ at 25° C . It is used in bridge circuit such that with $R_1 = R_2 = 600 \Omega$ and R_3 is variable resistor used to null the bridge if the supply voltage is 15 V and RTD is placed in bath at 0° C . Calculate the value of R_3 to null the bridge.


2. Draw the sketches of thermocouple & strain gauge and compare their working principles and applications.

3. Recommend a suitable process instrument for measuring very high temperature of gas combustion chamber and explain the physics of measurement with a neat sketch.

4. Modify the process flow diagram [PFD] which is given below into Piping and instrumentation diagram [PID] adding the following features to the process. Draw the modified diagram in the PFD itself.

- Add a high temperature alarm to the vacuum evaporator
- Add low pressure alarm and emergency shut down to the urea synthesis tower.
- Add a flow control loop between urea synthesis and distillation tower.
- Add temperature control loop between distillation tower and flash drum
- Add flow control loop to control the flow of liquid ammonia through multistage pump to urea synthesis tower.

(Engineers Guide, n.d. 2012)

5. A Rotameter uses a float of diameter 3 cm with density 4700 kg/m^3 . The inside diameter of pipe is 5 cm. Determine the volume and mass flow rate, if the fluid is naphtha with a density of 740 kg/m^3 assuming flow coefficient as 0.7

6. Explain the principle of measurement of turbine flow meter or reciprocating piston meter with a neat diagram

FORMULA SHEET

$$1. Q = C A_2 \sqrt{\frac{2(P_1 - P_2)}{\rho}}$$

$$2. Q = C \frac{D_p^2 - D_f^2}{D_f} \sqrt{\frac{\pi A_f g (\rho_f - \rho)}{2\rho}}$$

$$3. GF = \frac{\frac{\Delta R}{R}}{\frac{\Delta L}{L}}$$

$$4. \frac{\Delta L}{L} = \frac{F}{EA}$$

$$5. P_{out} = K_p e(t) + P_0$$

$$6. R_{RTD} = R_1 (1 + \alpha_0 (T_2 - T_1))$$

$$7. R_{T2} = R_{T1} (1 + C [T_2 - T_1])$$

$$8. H = KI + H_0$$

Reference

Simons, S. (2002). *Process Plant Instrumentation*. London: Delmar Cengage Learning

William Dunn, (2009). *Fundamentals of Industrial instrumentation and control*, New Delhi: McGraw Hill education, Indian edition